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Abstract

Our primary objective is the formulation of a plausible cosmo-
logical inflationary model entirely in terms of a pure modified grav-
ity without any a priori matter couplings within the formalism of
non-Riemannian spacetime volume elements. The non-Riemannian
volume elements dynamically create in the physical Einstein frame
a canonical scalar matter field and produce a non-trivial inflation-
ary scalar potential with a large flat region and a low-lying stable
minimum corresponding to the late universe stage. This dynamically
generated inflationary potential is a substantial generalization of the
classic Starobinsky potential. Our model predicts scalar power spec-
tral index and tensor to scalar ratio in accordance with the available
observational data.

1. Introduction

The theoretical framework based on the concept of “inflation” in the study
of the evolution of the early Universe provides an attractive solution ex-
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plaining the “puzzles” of Big-Bang cosmology (the horizon problem, the
flatness problem, the magnetic monople problem, etc. [1]-[5]. Likewise it is
an important instrumentarium for treatment of primordial density pertur-
bations [6, 7]. For some recent detailed accounts, see Refs.[8]-[12].

On the other hand, in a parallel development another groundbreaking
concept emerged in the last decade or so about the intrinsic necessity to
modify (extend) gravity theories beyond the scope of standard Einstein’s
general relativity with the main motivation to overcome the limitations of
the latter coming from: (i) Cosmology – for solving the problems of dark
energy and dark matter and explaining the large scale structure of the
Universe [13, 14]; (ii) Quantum field theory in curved spacetime – due to
renormalization of ultraviolet divergences in higher loops [15]; (iii) Modern
string theory – due to the natural appearance of higher-order curvature
invariants and scalar-tensor couplings in low-energy effective field theories
[16].

Various classes of modified gravity theories have been employed to
construct viable inflationary models: f(R)-gravity; scalar-tensor gravity;
Gauss-Bonnet gravity (see Refs.[17]-[21] for a detailed accounts); recently
also based on non-local gravity (Ref.[22] and references therein) or based on
brane-world scenarios (Ref.[23] and references therein). The first early suc-
cessful cosmological model based on the extended f(R) = R + R2-gravity
is the classical Starobinsky potential [1].

A further specific broad class of actively developed modified (extended)
gravitational theories is based on the formalism of non-Riemannian space-
time volume elements (originally proposed in Refs.[24]-[28]; see Refs.[29, 30]
for a systematic geometric formulation). This formalism was used as a
basis for constructing a series of extended gravity-matter models describ-
ing unified dark energy and dark matter scenario [31, 32], quintessential
cosmological models with gravity-assisted and inflaton-assisted dynamical
suppression (in the “early” universe) or dynamical generation (in the post-
inflationary universe) of electroweak spontaneous symmetry breaking and
charge confinement [33]-[35], as well as a novel mechanism for dynamical
supersymmetric Brout-Englert-Higgs effect in supergravity [29].

In what follows we will describe in some detail the construction of a vi-
able cosmological inflationary model starting from a modified pure gravity
involving several independent non-Riemannian volume elements and with-
out any a priori coupling to matter fields.

2. Brief Reminder on Non-Riemannian Volume-Forms (Vol-
ume Elements)

Let us briefly recall the essence of the non-Riemannian volume-form for-
malism (cf. Ref.[36]).

In integrals over differentiable manifolds (not necessarily Riemannian
one, so no metric is needed) volume-forms are given by nonsingular maximal
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rank differential forms ω:∫
M
ω(. . .) =

∫
M
dxD Ω(. . .) , ω =

1

D!
ωµ1...µDdx

µ1 ∧ . . . ∧ dxµD , (1)

where ωµ1...µD = −εµ1...µDΩ and Ω is the volume element density. Our
conventions for the totally anti-symmetric symbols are

ε01...D−1 = 1 , ε01...D−1 = −1.

In Riemannian D-dimensional spacetime manifolds a standard general-
ly-covariant volume-form is defined through the “D-bein” (frame-bundle)
canonical one-forms eA = eAµ dx

µ (A = 0, . . . , D − 1):

ω = e0 ∧ . . . ∧ eD−1 = det ‖eAµ ‖ dxµ1 ∧ . . . ∧ dxµD , (2)

where the standard Riemannian volume element density reads

Ω = det ‖eAµ ‖ =
√
−det ‖gµν‖ ≡

√
−g.

To construct modified gravitational theories as alternatives to ordi-
nary standard theories in Einstein’s general relativity, instead of

√
−g we

can employ one or more alternative non-Riemannian volume element(s)
as in (1) given by non-singular exact D-forms ω = dA, where: A =

1
(D−1)!Aµ1...µD−1dx

µ1 ∧ . . . ∧ dxµ−1 and the corresponding volume element

density reads:

Ω ≡ Φ(A) =
1

(D − 1)!
εµ1...µD ∂µ1Aµ2...µD . (3)

Thus, non-Riemannian volume element densities Φ(A) are defined in terms
of the (scalar density of the) dual field-strength of auxiliary rank D − 1
tensor gauge fields Aµ1...µD−1 .

As an important remark, let us note that in the first-order (Palatini)
formalism (gµν and Γλµν a priori independent), the auxiliary tensor gauge
fields Aµ1...µD−1 turn out to be (almost) pure-gauge – no propagating field
degrees of freedom except for few discrete degrees of freedom with con-
served canonical momenta appearing as arbitrary integration constants.
See Refs.[30]-[33] (appendices A) for a systematic proof of the latter fact
using the standard canonical Hamiltonian treatment of systems with gauge
symmetries, i.e., systems with first-class Hamiltonian constraints a’la Dirac
[37, 38].

However, in the second-order (metric) formalism (where Γλµν is the usual
Levi-Civita connection of the metric gµν) the first non-Riemannian volume
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form Φ(A), replacing
√
−g in the modified Einstein-Hilbert part of the

action:

S =

∫
d4xΦ(A)R+ . . . , (4)

is not any more pure-gauge. The reason is that in the action (4) the
scalar curvature R (in the metric formalism) containes second-order (time)
derivatives (the latter amount to a total derivative in the ordinary case
S =

∫
d4x
√
−gR+ . . .).

So defining χ1 ≡ Φ(A)/
√
−g, the latter field becomes physical degree

of freedom as seen from the equations of motion resulting from varying (4)
w.r.t. gµν :

Rµν +
1

χ1
(gµν�χ1 −∇µ∇νχ1) + . . . = 0 (5)

3. Modified Pure Gravity with Non-Riemannian Volume
Elements

Let us now consider the following simple modified gravity model without
any couplings to matter fields (we will use “Planck units” 16πGN = 1):

S =

∫
d4x
{

Φ1(A)
[
R− 2Λ0

Φ1(A)√
−g

]
+ Φ2(B)

Φ0(C)√
−g

}
. (6)

Here R is the scalar curvature in the metric formalism and:

Φ1(A) ≡ 1

3!
εµνκλ∂µAνκλ , Φ2(B) ≡ 1

3!
εµνκλ∂µBνκλ ,

Φ0(C) ≡ 1

3!
εµνκλ∂µCνκλ , (7)

denote three different independent non-Riemannian volume element densi-
ties as in (3) for D = 4. Λ0 is dimensionful parameter which will turn out
in what follows to play the role of an inflationary scale.

It is important to stress that the form of the action (6) is uniquely
specified by the requirement about global Weyl-scale invariance under:

gµν → λgµν , Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Cµνκ → Cµνκ . (8)

where λ = const. Its importance within the context of non-Riemannian
volume element formalism has been originally stressed in [26].

The equations of motion from the action (6) w.r.t. the auxiliary gauge
fields Aµνλ, Bµνλ , Cµνλ defining the non-Riemannian volume elements (7)
yield, respectively:

R− 4Λ0
Φ1(A)√
−g

= −M1 ≡ const , (9)

Φ0(C)√
−g

= −M2 ≡ const ,
Φ2(B)√
−g

= χ2 ≡ const . (10)
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Here M1,M2 and χ2 are (dimensionful and dimensionless, respectively) free
integration constants; M1,M2 indicate spontaneous breaking of global Weyl
symmetry (8).

Also, it is important to observe that, since the scalar curvature R con-
tains terms with second-order time derivatives on gµν , Eq.(9) is a genuine
dynamical equation of motion and not a constraint.

The equations of motion w.r.t. gµν from (6) read:

Rµν − Λ0χ1 gµν +
1

χ1
(gµν�χ1 −∇µ∇νχ1

)
− χ2M2

χ1
gµν = 0 , (11)

with χ1 ≡ Φ(A)/
√
−g. Taking the trace of (11):

3
�χ1

χ1
− 4χ2M2

χ1
−M1 = 0 (12)

yields a dynamical equation of motion for the composite scalar field χ1.

4. From Modified Gravity to the Physical Einstein Frame

We now transform Eqs.(11) and (12) to the physical Einstein frame via
the conformal transformation ḡµν = χ1gµν , upon using the well-known (cf.
Ref.[39]) conformal transformation formulas (bars indicate magnitudes in
the ḡµν-frame):

Rµν(g) = Rµν(ḡ)− 3
ḡµν
χ1

ḡκλ∂κχ
1/2
1 ∂λχ

1/2
1

+χ
−1/2
1 (∇̄µ∇̄νχ1/2

1 + ḡµν�̄χ
1/2
1 ) , (13)

�χ1 = χ1

(
�̄χ1 − 2ḡµν

∂µχ
1/2
1 ∂νχ1

χ
1/2
1

)
. (14)

Hereby the transformed equations acquire the standard form of Einstein
equations w.r.t. the new “Einstein-frame” metric ḡµν :

Rµν(ḡ)− 1

2
ḡµνR(ḡ) =

1

2

[
∂µu∂νu− ḡµν(

1

2
ḡκλ∂κu∂λu+ Ueff(u))

]
, (15)

�̄u+
∂Ueff

∂u
= 0 , (16)

where we have redefined

Φ1(A)/
√
−g ≡ χ1 = exp (u/

√
3) (17)

in order to obtain a canonically normalized kinetic term for the scalar field
u, and where we have obtained a dynamically generated effective scalar
potential:

Ueff(u) = 2Λ0 −M1 exp (− u√
3

) + χ2M2 exp (−2
u√
3

) . (18)
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Figure 1: Qualitative shape of the dynamically generated effective scalar
potential Ueff (18) as function of u. The unit for u is MPlanck/

√
2.

Ueff (18) is a generalization of the classic Starobinsky potential [1]; the latter
is a special case of (18) for Λ0 = 1

4M1 = 1
2χ2M2.

Accordingly, the corresponding Einstein-frame action reads:

SEF =

∫
d4x
√
−ḡ
[
R(ḡ)− 1

2
ḡµν∂µu∂νu− Ueff(u)

]
, (19)

with Ueff as in (18).
Let us particularly emphasize that the Einstein-frame action (19) is

entirely dynamically generated:
(a) The canonical scalar field u is dynamically created from the ratio

of the volume-element densities Φ1(A)/
√
−g (17);

(b) The effective potential Ueff(u) (18) is dynamically generated
due to the appearance of the free integration constants M1,2, χ2 in (18)
as a result of the specific (constrained) dynamics (9)-(10) of the auxiliary
gauge fields Aµνλ, Bµνλ, Cµνλ – constituents of the non-Riemannian volume
element densities Φ(A),Φ(B),Φ(C) (7). Ueff(u) (18) is graphically depicted
on Fig.1.

The dynamically generated potential Ueff(u) (18) has two main features
relevant for cosmological applications.

First, Ueff(u) (18) possesses a long flat region for large positive u and,
second, it has a stable minimum for a small finite value u = u∗:

• (i) Ueff(u) ' 2Λ0 for large u;
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• (ii) ∂Ueff
∂u = 0 for u ≡ u∗ where:

exp(− u∗√
3

) =
M1

2χ2M2
,

∂2Ueff

∂u2

∣∣∣∣
u=u∗

=
M2

1

6χ2M2
> 0 . (20)

The flat region of Ueff(u) for large positive u correspond to “early” uni-
verse’ slow-roll inflationary evolution with energy scale 2Λ0. On the other
hand, the region around the stable minimum at u = u∗ (20) correspond to
“late” universe’ evolution where:

Ueff(u∗) = 2Λ0 −
M2

1

4χ2M2
≡ 2ΛDE (21)

is the dark energy density value dynamically generated through the free
integration constants M1,2, χ2.

5. FLRW Reduction and Evolution of the Homogeneous So-
lution

Let us mow consider the reduction of the Einstein-frame action (19) to the
Friedmann-Lemaitre-Robertson-Walker (FLRW) setting with metric ds2 =
−N2dt2 + a(t)2d~x2, and with u = u(t).

The FLRW-reduced action reads:

SFLRW =

∫
d4x
[
−6

a
.
a

2

N
+Na3

(1

2

.
u

2
+M1e

−u/
√

3−M2χ2e
−2u/

√
3−2Λ0

)]
.

(22)
We will study the evolution of u = u(t) and a = a(t) specified by (22) using
the method of autonomous dynamical systems.

The pertinent Friedmann and u-field equations resulting from (22) are
given by:

H2 =
1

6
ρ , ρ =

1

2

.
u

2
+Ueff(u) , (23)

.
H= −1

4
(ρ+ p) , p =

1

2

.
u

2 −Ueff(u) , (24)

..
u +3H

.
u +

∂Ueff

∂u
= 0 . (25)

It is instructive (following Ref.[40]) to rewite the system of Eqs.(23)-(25)
in terms of a set of dimensionless variables:

x :=
u̇√
12H

, y :=

√
Ueff(u)− 2ΛDE√

6H
, z :=

√
ΛDE√
3H

, (26)

with LDE = Λ0 −
M2

1
8χ2M2

as in (21).
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Figure 2: Phase space portrait of the autonomous system (27). The x
axis denotes the relative kinetic part of the scalar inflaton, and the z axis
denotes the relative part of the dark energy density ΛDE.

The first Friedman Eq.(23) yields an algebraic constraint x2 +y2 +z2 =
1, so that the autonomous dynamical system w.r.t. (x, z) reads:

x′ =

√
3

2ΛDE
z2
[
−M1ξ(x, z) + 2M2χ2ξ

2(x, z)
]
− 3x(1− x2) ,

z′ = 3zx2 , (27)

where the primes denote derivative w.r.t. the parameterN = log a (number
of e-foldings), and the function ξ(x, z) is defined as:

ξ(x, z) =
M1

2χ2M2

[
1−

√
8Λ0M2χ2

M2
1

1− x2 − z2

z2

]
. (28)

Phase space portrait of the autonomous system (27) is depicted numer-
ically on Fig.2.

The autonomous system (27) possesses the following two critical points:
(a) Stable critical point A (x = 0, z = 1) corresponding to the “late”

universe de Sitter behavior with a cosmological constant ΛDE (21).

(b) Unstable critical point B
(
x = 0, z =

√
ΛDE/Λ0

)
corresponding to

beginning of evolution in the “early” universe at large u. If the evolution
starts at any point close to B, then the dynamics drives the system away
from B all the way towards the stable point A at late times.

Numerical solutions of the FLRW system (23)-(25) are graphically pre-
sented on Fig.3 for the Hubble parameter H(t), and on Fig.4 for the scalar
field u(t).
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Figure 3: Numerical example of the solution for the Hubble parameter
H(t) vs. time. Initially for short times the inflationary Hubble parameter
is large and afterwards approaches its cosmological late time value.

Figure 4: Numerical example of the solution for the scalar field u(t) vs.
time. The unit for u is MPlanck/

√
2. The blown-up rectangle depicts the

oscillations of u(t) around the minimum of Ueff (18).



10 D. Benisty, E. Guendelman, E. Nissimov and S. Pacheva

6. Perturbations and Observables

In order to check the viability of our model we will investigate the pertur-
bations of the above FLRW background evolution (23)-(25), in particular
focusing on the inflationary observables such as the scalar power spectral
index ns and the tensor-to-scalar ratio r (for definitions, see e.g. Ref.[41]).
As usual, we introduce the Hubble slow-roll parameters, which in our case
using the potential Ueff(u) (18) read:

ε =
(U ′eff(u)

Ueff(u)

)2
=

4ζ2

3

(1/2− ζ)2

[(1/2− ζ)2 + δ/4]2
, (29)

|η| = 2|
U ′′eff(u)

Ueff(u)
| = 2ζ

3

(1− 4ζ)

[(1/2− ζ)2 + δ/4]
, (30)

where:

ζ ≡ M2χ2

M1
e−u/

√
3 , δ ≡ 8M2χ2

M2
1

ΛDE , (31)

with ΛDE – the dark energy density (21), and therefore the parameter δ
being very small.

Inflation ends when ε(uf ) = 1 for some u = uf whose value (using the

short-hand notation ζf ≡ M2χ2

M1
e−uf/

√
3) is given by:

ζf =
1

2(1 + 2/
√

3)

[
1 +

1√
3
−
√

1/3− (1 + 2/
√

3)δ
]
' 1

2(1 + 2/
√

3)
. (32)

For the number of e-foldings N = 1
2

∫ uf
ui
du Ueff/U

′
eff we obtain:

N =
3

8
(1 + δ)

(
1/ζi − 1/ζf

)
− 3

4
(1− δ) log

ζf
ζi

+
3

4
δ log

( 1− 2ζi
1− 2ζf

)
, (33)

where ζi ≡ M2χ2

M1
e−ui/

√
3 and u = ui is very large corresponding to the start

of the inflation.
Ignoring the very small δ we have for N approximately:

N ' 3M1

8M2χ2
eui/

√
3 −
√

3

4
ui −

3

4
(1 + 2/

√
3) +

3

4
log
(

2(1 + 2/
√

3)
)
. (34)

Using the slow-roll parameters (29)-(30), one can calculate the values of
the scalar spectral index ns and the tensor-to-scalar ratio r, respectively,
as functions of the e-foldings N :

r ≈ 16 ε(ui(N )) , ns ≈ 1− 6 ε(ui(N )) + 2η (ui(N )) , (35)
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Figure 5: The predicted values of the r and ns for different number of
e-foldings

where ui(N ) is the solution of the transcedental Eq.(34) for ui as a function
of N . From (35), (34), (29), (30) we find:

r ' 12[
N +

√
3

4 ui(N ) + c0

]2 , c0 ≡
√

3

2
− 3

4
log
(

2(1 + 2/
√

3)
)
, (36)

ns ' 1− r

4
−
√
r

3
. (37)

The numerical results for (36)-(37) are depicted on Fig.5.
The different values of the r and ns are compatible with the PLANCK

observational data (0.95 < ns < 0.97 , r < 0.064) (cf. Ref.[42]).
Indeed, for the viable example of N = 60 e-foldings until the end of

inflation we obtain from (34)-(37):

ns ≈ 0.969 , r ≈ 0.002 . (38)

7. Conclusions

• We proposed a very simple modified gravity model without any ini-
tial coupling to matter fields in terms of several alternative non-Rie-
mannian spacetime volume elements within the second order (metric)
formalism.

• We show how the non-Riemannian volume elements, when passing
to the physical Einstein frame, create a canonical scalar field and
produce dynamically a non-trivial inflationary-type potential for the
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latter possesing a large flat region describing slow-roll inflation and a
stable low-lying minimum corresponding to the late universe stage.

• We study the evolution and stability of the cosmological solutions
from the point of view of the theory of dynamical systems. Our model
predicts scalar spectral index ns ≈ 0.969 and tensor-to-scalar ratio
r ≈ 0.002 for 60 e-folds, which is in accordance with the observational
data.
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