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Abstract

We review and discuss properties of the recently introduced fuzzy de Sitter
space [1, 2, 3], in particular its predictions in cosmology.

1. Introduction

One of pending problems in theoretical physics is description of the struc-
ture of spacetime at small distances, that is (if we believe in Einstein’s
insight on the relation between geometry and gravity), quantization of grav-
ity. Since straightforward quantization of the gravitational field does not
work, other ideas are developed. On the line of physics, it is for example the
idea that there is an elementary substructure (like strings) exists, that it
can be quantized by the usual methods yielding the ‘quanta of spacetime’.
On the line of mathematics, the idea that there is yet to be discovered
algebraic structure that generalizes the existing notion of geometry, and
provides Einstein’s gravity in the large scale limit. There are many ideas in
between, combining quantum field theory with geometry. Quantum space-
time should, or should have a potential to, solve two main problems of
the current description of space, time and matter: singularities in general
relativity and divergences in quantum field theory.

We usually belive that spacetime at small scales will have some kind
of geometric structure, different from that of a manifold: perhaps discrete.
This structure might be effective or emergent, but also fundamental. A dis-
crete structure physicists are very familiar with is that of an algebra, e.g.
the algebra of operators in Hilbert space or a Lie algebra. In noncommu-
tative geometry one assumes that spacetime is described by an algebra of
operators, more precisely, a C∗ algebra. Furthermore, in order to describe
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fields and equations of motion, one introduces derivatives. In principle,
the goal is to introduce noncommutative differential geometry (as quantum
spacetime), and describe classical and quantized fields on it. There are
several different approaches to this: we work in the following within the
noncommutative frame formalism of Madore, [4].

A paradigmatic example of a noncommutative space is the fuzzy sphere,
[5]. To construct it one uses its symmetry: here we use similar construction,
aiming to obtain four-dimensional fuzzy spacetimes with spherical symme-
try. This will enable, we believe, to define noncommutative generalizations
of important configurations such as black holes or cosmological spacetimes.
As the initial step, we define four-dimensional fuzzy de Sitter space, us-
ing the algebra of the de Sitter group SO(1,4) and its unitary irreducible
representations.

2. Noncommutative frames

A noncommutative space is an algebra A generated by a set of hermitian
coordinates xµ

[xµ, xν ] = ik̄Jµν(x). (1)

We can either have an abstract position algebra or its concrete represen-
tation, ideally we discuss both. The structure of a noncommutative space
can for example be described by the spectra of its coordinates xµ. There
are however other ways to characterize a fuzzy space like its symmetries, or
a set of coherent states, or very importantly, its commutative/large scale
limit. Diffeomorphisms of noncommutative space are functions on the al-
gebra. Obviously, changes of coordinates change their spectrum. There-
fore, although it became quite usual to relate the term ‘fuzzy’ with either
discrete spectrum or finite-dimensional representations, we will in the fol-
lowing identify ‘fuzzy’ with noncommutative, not presuming a priori any
properties of the spectra.

Differential structure of A is given by the momentum algebra. Momenta
pα define a set of vector fields eα – the free falling frame or tetrad – by

eαf = [pα, f ]. (2)

Commutator satisfies the Leibniz rule, and therefore eα are indeed deriva-
tions. In many examples of fuzzy spaces one can identify the algebra gen-
erated by momenta with the algebra generated by coordinates, and thus
assume that A is given by either of the sets. But as we want to include, as
a particular case, the usual commutative geometry, we do not do so. On
commutative manifold, moving frame is given by eαf = eµα (∂µf), that is

pα = eµα ∂µ, eµα = [pα, x
µ] . (3)

Momenta lie outside the coordinate algebra A, eα are outer derivatives.
The space of vector fields, tangent space, has dimension equal to dimension
of spacetime.
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In the noncommutative case we can define, in analogy

eµα = [pα, x
µ], gµν = eµα e

ν
β η

αβ . (4)

Geometry is defined by the choice of a set of momenta, which now does
not have a priori fixed number of elements, as the tangent space of a non-
commutative algebra is infinite-dimensional. One can also define the frame
1-forms θα dual to eα, and the differential d

df = (eαf) θα, [θα, θβ] = 0. (5)

There are additional conditions [4], to assure orthonormality of the moving
frame and compatibility of the algebraic (1) with the differential structure
(2). If we work with an abstract algebra, the Jacobi identities are also
imposed as constraints. It is then possible to define differential-geometric
quantities like connection, covariant derivative, curvature and torsion, by
formulas analogous to those given in the Cartan’s description of geometry.
Laplacian of a scalar function is defined naturally,

∆f = ηαβ[pα, [pβ, f ]]. (6)

Thus one can describe curved noncommutative spaces as well as scalar,
spinor and gauge fields. One notion that is representation-dependent is
that of a trace, and therefore on an abstract noncommutative space the
action is defined only formally.

3. Fuzzy de Sitter space

Construction which we describe here shows that it is in fact possible to
adapt and generalize the fuzzy sphere, and obtain noncommutative exten-
sions for all homogeneous spaces. We discuss four-dimensional fuzzy de
Sitter space. In the commutative case, de Sitter space is defined as the
embedding, [6]

−v2 + w2 + x2 + y2 + z2 =
3

Λ
(7)

in the flat five-dimensional space

ds2 = −dv2 + dw2 + dx2 + dy2 + dz2. (8)

It has maximal symmetry. We (and originally, [7, 8]) define fuzzy de Sitter
space using the algebra of its symmetry group SO(1,4). It has ten genera-
tors Mαβ,

[Mαβ,Mγδ] = −i(ηαγMβδ − ηαδMβγ − ηβγMαδ + ηβδMαγ) (9)
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α, β, ... = 0, 1, 2, 3, 4; we use signature ηαβ = diag(+−−−−). The SO(1,4)
has two Casimir operators, quadratic and quartic

Q = −1

2
MαβM

αβ, (10)

W = −WαW
α, Wα =

1

8
εαβγδηM

βγM δη. (11)

Clearly, relation W=const would be analogous to the embedding of (7) of
the four-dimensional commutative de Sitter space in five flat dimensions.
Therefore, we introduce coordinates as

xα = `Wα (12)

and define fuzzy de Sitter space to be a unitary irreducible representation
(UIR) of the de Sitter algebra. The quartic Casimir of SO(1,4) is then
related to the cosmological constant, as ηαβ x

αxβ = `2WαWα = 3/Λ .
Coordinates xα are quadratic in the group generators, and in general

they do not close into a Lie or quadratic algebra under commutation:

[Wα,W β] = − i
2
εαβγδηWγMδη . (13)

However, one can show [2], that in irreducible representations they generate
the whole algebra via

iWMρσ = [W ρ,W σ] +
1

2
εαµρστWτ [Wα,Wµ]. (14)

We will see later that this formula is the Fourier transformation.
We have (at least) two choices of momenta that give de Sitter metric in

the commutative limit of this fuzzy space, [1]. The simplest is

ip0 = M04 , ipi = Mi4 +M0i. (15)

The frame formalism gives us the line element,

ds2 = dτ2 − e−2τ (dxi)2 (16)

where cosmic time τ is defined by

τ

`
= log(W0 −W4) . (17)

In the conformal group notation, Mi4 + M0i are translations and M04 is
dilatation. From

[ iM04,W0 −W4] = W0 −W4 (18)

we find that dilatation is canonically conjugate to the cosmic time, i.e, it
can be identified with the hamiltonian.

Unitary irreducible representations of de Sitter group are known, found
in [9]. They are labelled by two quantum numbers (s, ρ) or (ν, q) and fall
into following categories:
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• Principal continuous series: ρ ≥ 0, s = 0, 12 , 1,
3
2 , . . .

Q = −s(s+ 1) + 9
4 + ρ2, W = s(s+ 1)(14 + ρ2)

• Complementary continuous series: ν ∈ R, |ν| < 3
2 , s = 0, 1, 2 . . .

Q = −s(s+ 1) + 9
4 − ν

2, W = s(s+ 1)(14 − ν
2)

• Discrete series: s = 1
2 , 1,

3
2 , 2 . . . , q = s, s− 1, . . . 0 or 1

2

Q = −s(s+ 1)− (q + 1)(q − 2), W = s(s+ 1)q(q − 1) .

4. Spatial coordinates

The principal continuous series has Hilbert space representations [10], which
are given in the Bargmann-Wigner representation spaces [11] of the unitary
irreducible representations of the Poincaré group. The Hilbert space for the
(ρ, s = 1

2) UIR is the space of Dirac bispinors ψ(~p) which satisfy the Dirac
equation. In the Dirac representation of γ-matrices,

ψ(~p) =

 ϕ(~p)

− ~p · ~σ
p0 +m

ϕ(~p)

 . (19)

The scalar product is given by

(ψ,ψ′) =

∫
d3p

2p0
ψ†γ0ψ′ =

∫
d3p

p0

2m

p0 +m
ϕ†ϕ′ . (20)

Having an explicit representation, we can solve the eigenvalue problems
of the coordinates and thus determine properties of the space. Because
of the specific scalar product, hermiticity of coordinates is sometimes not
completely obvious. Introducing the expressions for the generators, we find

W 0 = − 1

2m

(ρ− i
2)piσ

i + i p20
∂
∂pi
σi εijkp0pi

∂
∂pj

σk + 3i
2 p0

εijkp0pi
∂
∂pj

σk + 3i
2 p0 (ρ− i

2)piσ
i + ip20

∂
∂pi

σi

 (21)

W 4 = −1

2

 ip0
∂
∂pi
σi εijkpi

∂
∂pj

σk + 3i
2

εijkpi
∂
∂pj

σk + 3i
2 ip0

∂
∂pi
σi

 . (22)

To find the spectrum of the embedding time W 0 we do not have to solve
a differential equation: from the matrix elements of Mαβ one can easily
find that the spectrum of W 0 is discrete in all UIR’s, with eigenvalues
k(k + 1)− k′(k′ + 1).
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Because of symmetry, the spectra of spatial coordinates W i and W 4

are the same: as simpler, we solve the differential equation for W 4. It
commutes with spatial rotations so we can take the Ansatz of the form

ϕ(~p) =
f(p)

p
ϕjm +

h(p)

p
χjm , (23)

where ϕjm and χjm are spinor spherical harmonics,

ϕjm =


√

j+m
2j Y

m−1/2
j−1/2√

j−m
2j Y

m+1/2
j−1/2

 , χjm =


√

j+1−m
2(j+1) Y

m−1/2
j+1/2

−
√

j+1+m
2(j+1) Y

m+1/2
j+1/2

 , (24)

and Y m
l are spherical harmonics in momentum space, p = |~p|, j = 1

2 ,
3
2 , . . . .

The W4−eigenvalue equation for bispinor ψ̃σjm, (19), (denoted by tilde
to distinguish it from eigenfunctions of τ in the next section)

W4 ψ̃σjm = σψ̃σjm , (25)

reduces to two coupled equations for spinors ϕ̃σjm. Introducing

f̃ = (x2 − 1)1/4 F̃ , h̃ = (x2 − 1)1/4 H̃ , (26)

and variable x = p0/m ∈ (1,∞) , we obtain a set of Legendre equations

(x2 − 1)
d2F̃

dx2
+ 2x

dF̃

dx
− j2

x2 − 1
F̃ = 2iσ(2iσ − 1)F̃ , (27)

(x2 − 1)
d2H̃

dx2
+ 2x

dH̃

dx
− (j + 1)2

x2 − 1
H̃ = 2iσ(2iσ − 1)H̃ (28)

with a relation between F̃ and H̃. A regular solution to these equations
exists for every real σ, and is expressed in terms of the associated Legendre
functions:

f̃σj = A (x2 − 1)
1
4 P−j−2iσ(x), h̃σj = A (2iσ − j − 1)(x2 − 1)

1
4 P−j−1−2iσ (x)

(29)
Eigenfunctions of W 4 are orthogonal and normalized to δ-function,

(
ψ̃σjm, ψ̃σ′j′m′

)
= 2A∗A′

Γ(12 − 2iσ) Γ(12 + 2iσ′)

Γ(j + 1− 2iσ) Γ(j + 1 + 2iσ′)
δmm′ δjj′ δ(σ − σ′) .

(30)
Thus, the spectrum of W 4 (and all W i) is continuous, the real line.
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5. Cosmic time

We can use the same Ansatz to analyze the eigenvalues of the cosmic time
τ , eτ/` = W0 −W4 , i.e. to solve

(W0 −W4)ψλjm = λψλjm . (31)

After some calculation, we find that now the natural variable in which

differential equations simplify is z =
√

p0−m
p0+m

∈ (0, 1) . We introduce

f =

(
2

1− z2

)−iρ
zj+

1
2 F , h =

(
2

1− z2

)−iρ
z−j−

1
2 H (32)

and obtain the following of Bessel equations

z2
d2F

dz2
+ z

dF

dz
+
(
4λ2z2 − j2

)
F = 0

z2
d2H

dz2
+ z

dH

dz
+
(
4λ2z2 − (j + 1)2

)
H = 0 .

The regular solution to these equations is given by

fλj = C

(
2

1− z2

)−iρ√
z Jj(2λz), hλj = iC

(
2

1− z2

)−iρ√
z Jj+1(2λz).

(33)
It exists for every real λ, but for λ and −λ the functions are proportional.
So apparently, λ ∈ (0,∞), and the spectrum of W0 −W4 is continuous.
However, when we calculate the scalar product

(ψλjm, ψλ′j′m′) ∼ δjj′δmm′
1∫

0

zdz (Jj(2λz)Jj(2λ
′z) + Jj+1(2λz)Jj+1(2λ

′z))

(34)
we find that it is bounded for λ = λ′ , i.e. all solutions are normalizable,
which is in contradiction with the statement that they belong to a contin-
uous spectrum. The solutions are also not orthogonal for λ 6= λ′.

Thus, not all of formal solutions (33) can be eigenfunctions, that is,
W0−W4 is not a self-adjoint operator. One can perform a detailed analysis
of hermiticity [3], and find that the domain D(W0 −W4) is unequal to the

domain of the adjoint operator, D(W †0−W
†
4 ) . The corresponding deficiency

indices are equal, (n+, n−) = (1, 1). That means that it is possible to find

self-adjoint extensions by restricting the domain of W †0 −W
†
4 , [12].

The appropriate condition which defines the domain is

F (0) = H(0) = 0, H(1) = icF (1) , (35)
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Figure 1: Solutions to Eq. (36) for j = 7
2 , c = 1.

One can see that eigenfunctions (33) can satisfy (35). First relation is
clearly true, the second gives

Jj+1(2λ)

Jj(2λ)
= c = const, (36)

that is, an equation for λ. This equation, as seen from Figure 1, has
infinitely many solutions for every real c; the set of solutions is discrete.
Using the recurrence relations between the Bessel functions, it is possible
to show that these solutions orthonormal. We thus conclude thae cosmic
time has discrete spectrum.

6. Initial singularity

There are several immediate consequences of the above considerations. We
can verify that fuzzy de Sitter space corresponds to an expanding cosmol-
ogy. The (squared) radius of the universe is given by

(xi)2 = −`2WiW
i (37)

and its evolution can be traced by the expectation value 〈(xi)2〉 in the
eigenstates of time. Using the Casimir relation

−WiW
i =W +W 2

0 −W 2
4 , (38)

and taking the expectation value in normalized eigenstates ψλjm, we find

〈−WiW
i〉 =W + 〈(W0 +W4)(W0 −W4)〉 =W + λ2 + 2λ 〈W4〉 .
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The value of 〈W4〉 can be estimated: analyzing the explicit expressions we
obtain 0 ≤ 〈W4〉 ≤ λ

2 , and hence

W + λ2 ≤ 〈−WiW
i 〉 ≤ W + 2λ2 . (39)

The expectation value of the radius of the universe is bounded below by
`
√
W : it cannot vanish in physical states. This fact resolves the problem of

the initial big bang singularity. The radius grows exponentially with time:
for late times we have

√
〈−WiW i〉 ∼ λ = e〈τ〉/` .

Discreteness obtained by requiring self-adjointness is known in other
cases of quantum spaces too, [13, 14, 15, 16]. It becomes relevant in the
‘deep quantum region’ λ→ 0 , i.e. 〈τ〉 → −∞ , i.e. near the big bang. For
values away from the Planck scale time is almost continuous: the difference
between its consecutive eigenvalues is macroscopically negligible,

τn+1 − τn ≈ ` log (1 +
1

n
) . (40)

Discretization of time means also that the initial classical symmetries of
fuzzy de Sitter space near the Planck scale are spontaneously broken, by
the choice of the self-adjoint extension. As we can see, it is restored at large
scales. It will be important to understand, in the future, the nature of the
symmetry breaking, and whether perhaps symmetry remains as deformed
or quantum symmetry.
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