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Abstract

Nonlinear realizations of the SO(4,2) group are discussed from the point of
view of symmetries. Dynamical symmetry breaking is introduced. One linear
and one quadratic model in curvature are constructed. Coherent states of the
Klauder–Perelomov type are defined for both cases taking into account the coset
geometry. A new spontaneous compactification mechanism is defined in the sub-
space invariant under the stability subgroup. The physical implications of the
symmetry breaking in the context of nonlinear realizations and direct gauging are
analyzed and briefly discussed

1. Introduction

Studies of higher-dimension theories that involve (spontaneously) broken
symmetries and non-commutativity in the quantum case are motivated by
searches for a unified theory. Dimensional reduction of such theories is
not unique and becomes extremely involved when gravity is included. We
believe that the guiding principles for the reduction are provided by the
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observed (or desirable) physical field content and by the group theoretical
structure itself.

From the technical point of view, we have to extend physical fields
into an extra (internal) space with preserving the general noncommutative
quantum structure. However the development of a mechanisms that permit
us display the set of physical fields in interaction with the corresponding
four dimensional world implies that some of the original symmetries of the
higher-dimension manifold have been broken. There exist many theoretical
attempts to realize the above ideas such as string and brane theories but
none of them can be treated as the final answer: formulation of such theories
contain serious problems that are still non solved. In spite of the fact that in
these theories the solution seems to include a non-commutative structure [1,
2], the concrete implementation of these symmetries in a substructure of
any (super) manifold seems to be very complicated from the technical and
geometrical viewpoint.

However there exist another way to attack the unification problem that
is in the context of gauge theories of gravity [3, 4, 5]. The first model
of gauge gravitation theory was suggested by R. Utiyama [6] in 1956 just
two years after the birth of gauge theory itself. He was the first who
generalized the original gauge model of Yang and Mills for SU(2) to an
arbitrary symmetry Lie group and, in particular, to the Lorentz group
in order to describe gravity. However, he met the problem of treating
general covariant transformations and a pseudo-Riemannian metric which
had no partner in the Yang–Mills gauge theory. To eliminate this drawback,
representing a tetrad gravitational field as a gauge field of a translation
subgroup of the Poincaré group was attempted because, by analogy with
gauge potentials in Yang–Mills gauge theory, the indices a of a tetrad field
µ were treated as those of a translation group, see [3, 4, 7, 8, 9, 10, 11]
and references therein. Since the Poincaré group comes from the Wigner–
Inonu contraction of de Sitter groups SO(2, 3) and SO(1, 4) and it is a
subgroup of the conformal group, gauge theories on fibre bundles with
these structure groups were also considered [12, 13, 14, 15, 16, 17, 18].
Because these fibre bundles fail to be natural, the lift of the group Diff(X)
of diffeomorphisms of the fiber onto the base should be defined [19, 20].
However, these gauging approaches contain the problem with a non-linear
(translation) summand of an affine connection being a soldering form, but
neither a frame (vierbein) field nor a tetrad field. Thus the latter doesn’t
have the status of a gauge field [21, 22, 23]. At the same time, gauge theory
in the case of spontaneous symmetry breaking also contains classical Higgs
fields, besides the gauge and matter ones [24, 25, 26, 27, 28, 29, 30, 31, 32].
Therefore, basing on the mathematical definition of a pseudo-Riemannian
metric, some authors formulated gravitation theory as a gauge theory with
a reduced Lorentz structure where a metric gravitational field is treated as
a Higgs field [33, 34, 35, 36, 37].

The most satisfactory answer to the formulation of gravity as a gauge
theory was developed in the pure geometrical context in the works of
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D.V. Volkov et al. [38, 39]; in the context of supergravity by Arnowitt and
Pran Nath [40]; and finally by Mansouri [41] who was able to solve some of
the problems listed before by means of a principal fiber bundle imposing a
condition of orthogonality of the generators of the fiber and base manifold.
Such conditions that break the symmetry of the original group are imple-
mented by means of a particular choice of the metric tensor. This approach
was implemented in a supergroup structure obtaining a gauge theory of su-
pergravity. Notice that the underlying geometry must be reductive (in the
Cartan sense) or weakly reductive in the case of supergravity.

As always, even the problem to determine which fields transform as
gauge fields and which not, as well as which fields are physical ones and
which are redundant, nonetheless remains. Also the relation between the
coset factorization (as in the case of the non-linear realization approach [47,
48, 49]) and the specific breaking of the symmetry in the pure topological
theories of grand unification (GUT) is still unclear.

2. Coset coherent states

Let us remind the definition of coset coherent states

H0 = {g ∈ G | U (g)V0 = V0} ⊂ G. (1)

Consequently the orbit is isomorphic to the coset, e.g.

O (V0) ' G/H0. (2)

Analogously, if we remit to the operators, e.g.

|V0〉 〈V0| ≡ ρ0 (3)

then the orbit

O (V0) ' G/H (4)

with

H = {g ∈ G | U (g)V0 = θV0}

=
{
g ∈ G | U (g) ρ0U† (g) = ρ0

}
⊂ G. (5)

The orbits are identified with cosets spaces of G with respect to the corre-
sponding stability subgroups H0 and H being the vectors V0 in the second
case defined within a phase. From the quantum viewpoint |V0〉 ∈ H (the
Hilbert space) and ρ0 ∈ F (the Fock space) are V0 normalized fiducial
vectors (embedded unit sphere in H).
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3. Symmetry breaking mechanism: the SO(4, 2) case

3.1. General considerations

i) Let a, b, c = 1, 2, 3, 4, 5 and i, j, k = 1, 2, 3, 4 (in the six-matrix represen-
tation) then the Lie algebra of SO (2, 4) is

i [Jij , Jkl] = ηikJjl + ηjlJik − ηilJjk − ηjkJil, (6)

i [J5i, Jjk] = ηikJ5j − ηijJ5k, (7)

i [J5i, J5j ] = −Jij , (8)

i [J6a, Jbc] = ηacJ6b − ηabJ6c, (9)

i [J6a, J6b] = −Jab. (10)

ii) Identifying the first set of commutation relations (6) as the lie algebra
of the SO (1, 3) with generators Jik = −Jki.

iii) The commutation relations (6) plus (7) and (8) are identified as
the Lie algebra SO (2, 3) with the additional generators J5i and ηij =
(1,−1,−1,−1).

iv) The commutation relations (6)–(10) is the Lie algebra SO (2, 4) writ-
ten in terms of the Lorentz group SO (1, 3) with the additional generators
J5i, J6b, and Jab = −Jba, where ηab = (1,−1,−1,−1, 1). It follows that the
embedding is given by the chain SO(1, 3) ⊂ SO(2, 3) ⊂ SO(2, 4).

From the six dimensional matrix representation we know from that

parameterizing the coset C = SO(2,4)
SO(2,3) and P = SO(2,3)

SO(1,3) , then any element G

of SO(2, 4) is written as

SO(2, 4) ≈ SO(2, 4)

SO(2, 3)
× SO(2, 3)

SO(1, 3)
× SO(1, 3), (11)

explicitly

G = e−iz
a(x)JaG (H)

= e−iz
a(x)Jae−iε

k(x)PkH (Λ) . (12)

Consequently we have G (H) : H → G is an embedding of an element
of SO(2, 3) into SO(2, 4) where Ja ≡ 1

λJ6a and H (Λ) : Λ → H is an

embedding of an element of SO(1, 3) into SO(2, 3) where Pk ≡ 1
mJ5k as
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follows

G = e−iz
a(x)Jae−iε

k(x)Pk



SO(3, 1) 0

0 I2x2


︸ ︷︷ ︸

H(Λ)︸ ︷︷ ︸
G(H)

(13)

then any element G of SO(2, 4) is written as the product of an SO(2, 4)
boost, an ADS boost, and a Lorentz rotation.

4. Goldstone fields and symmetries

i) Our starting point is to introduce two 6-dimensional vectors V1 and V2

being invariant under SO (3, 1) in a canonical form. Explicitly


0
0
0
0
A
0


︸ ︷︷ ︸

V1

+


0
0
0
0
0
−B


︸ ︷︷ ︸

V2

=


0
0
0
0
A
−B


︸ ︷︷ ︸

V0


invariant under SO (3, 1) . (14)

2) Now we take an element of Sp (2) ⊂ Mp (2) embedded in the 6-
dimensional matrix representation operating over V as follows

MV →


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 a b
0 0 0 0 c d


︸ ︷︷ ︸

Sp(2)⊂Mp(2)


0
0
0
0
A
−B


︸ ︷︷ ︸

V0

=


0
0
0
0
A′

−B′

 = V ′ (15)

where
A′ = aA− bB,
−B′ = cA− dB (16)
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consequently we obtain a Klauder-Perelomov generalized coherent state
with the fiducial vector V0.

ii) The specific task to be made by the vectors is to perform the break-
down to SO(3, 1). Using the transformed vectors above (Sp(2) ∼ Mp (2)
CS) the symmetry of G can be extended to an internal symmetry as

SU(1, 1) given by G̃ below (notice |λ|2 − |µ|2 = 1):

G̃V ′ = e−iz
a(x)Jae−iε

k(x)Pk


SO(3, 1) 0

0
λ µ
µ∗ λ∗


︸ ︷︷ ︸

H̃(Λ)︸ ︷︷ ︸
G̃(H)

V ′ =

(17)

= e−iz
a(x)Jae−iε

k(x)Pk


SO(3, 1) 0

0
α 0
0 β


︸ ︷︷ ︸

H(Λ)︸ ︷︷ ︸
G(H)

V0 = GV0,

(18)

M =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 λ∗α −µβ
0 0 0 0 −µ∗α λβ

 (19)

and if we also ask for DetM = 1 then αβ = 1, e.g. the additional phase:
it will bring us the 10th Goldstone field. The other nine are given by
za (x) and εk (x) (a, b, c = 1, 2, 3, 4, 5 and i, j, k = 1, 2, 3, 4) coming from the

parameterizations of the cosets C = SO(2,4)
SO(2,3) and P = SO(2,3)

SO(1,3) .
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5. Invariant SO(2, 4) action and breakdown mechanism

5.1. Linear in RAB

S =

∫
µAB ∧RAB (20)

in this case we note at first, that the tensor µAB SO(2, 4)-valuated acts as
multiplier in S (without any role in dynamics, generally speaking). Having
this fact in mind, let us consider the following points:
i) if we have two diffeomorphic (or gauge) nonequivalent SO(2, 4)-valuated

connections, namely ΓAB and Γ̃AB, their difference transforms as a second
rank six-tensor under the action of SO(2, 4)

κAB = GACG
B
Dκ

CD, (21)

κAB ≡ Γ̃AB − ΓAB. (22)

ii) If we now calculate the curvature from Γ̃AB we obtain

R̃AB = RAB +DκAB, (23)

where the SO(2, 4) covariant derivative is defined in the usual way

DκAB = dκAB + ΓAC ∧ κCB + ΓBD ∧ κAD. (24)

iii) Redefining the SO(2, 4) six vectors as V A
2 ≡ ψA and V B

1 ≡ ϕB (in order
to put all in standard notation), the 2-form κAB can be constructed as

κAB → ψ[AϕB]dU. (25)

Then we introduce all into the R̃AB (U scalar function) and get

R̃AB = RAB +D
(
ψ[AϕB]dU

)
= RAB +

(
ψ[ADϕB] − ϕ[ADψB]

)
∧ dU. (26)

The next step is to find the specific form of µAB such that µ̃AB = µAB
(invariant under tilde transformation) in order to make the splitting of the

transformed action S̃ reductive as follows.
iv) Let us define

θ̃
A

= D̃ϕA (27)

with the connection Γ̃AB = ΓAB + κAB, then

θ̃
A

= DϕA︸ ︷︷ ︸
θA

+ κABϕ
B,

θ̃
A

= θA +
[
ψA
(
ϕB
)2 − ϕA (ψ · ϕ)

]
∧ dU, (28)
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where
(
ϕB
)2

=
(
ϕ Bϕ

B
)

and (ψ · ϕ) = ψBϕ
B etc.

In the same manner we also define

η̃A = D̃ψA,

η̃A = ηA +
[
ψA2 (ψ · ϕ)− ϕA

(
ψB
)2] ∧ dU. (29)

v) To determine µAB we propose to cast it in the form

µAB ∝ ρs
[
aψFϕEεABCDEF

(
θC ∧ ηD + θC ∧ θD + ηC ∧ ηD

)
+ bκAB

]
(30)

with ρs, a, b scalar functions in particular contractions of vectors and bivec-
tors SO(2, 4)-valuated with εABCDEF ) to be determined. The behaviour
under the tilde transformation is

µ̃AB ∝ µAB −
1

2
ρsaψ

FϕEεABEFdξ ∧ dU, (31)

where ξ =
(
ψA
)2 (

ϕB
)2 − (ψ · ϕ)2.

vi) Finally we must see the behaviour of the transformed action

S̃ =

∫
µ̃AB ∧ R̃AB

= S +

∫
1

2
ρsaκAB ∧RAB ∧ dξ +

∫
µAB ∧ DκAB. (32)

We see that till this point, the SO(2, 4)-valuated six-vectors ψF and ϕE are
in principle arbitrary. However, under the conditions discussed in the first
Section the vectors go to the fiducial ones modulo a phase. Consequently

ξ → A2B2 (33)

and the bivector comes to

κAB → ψ[AϕB]dU → ∆ (AB) εαβ = αβABεαβ = ABεαβ, α, β : 5, 6,
(34)

where we define the 2nd rank antisymmetric tensor εαβ and

∆ = Det

(
λ∗α −µβ
−µ∗α λβ

)
= αβ = 1(unitary transformation) (35)

Below we consider two important cases with respect to the components
m and λ.
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5.2. A = m and B = λ

1 If the coefficients A = m and B = λ play the role of constant param-
eters we have

dξ → d
(
λ2m2

)
= 0 (36)

and

DκAB → d (λm) εαβ ∧ dU = 0 (37)

making the original action S invariant e.g.:

S̃
∣∣∣
V0

=

∫
µ̃AB ∧ R̃AB =

∫
µAB ∧RAB = S (38)

being S̃
∣∣∣
V0

the restriction of S̃ under the subspace generated by V0

and consequently breaking the symmetry from SO (2, 4)→ SO (1, 3).

2 The connections after the symmetry breaking (when the mentioned
conditions with λ and m constants are fulfilled) become

Γ̃AB = ΓAB + κAB ⇒ b.o.s.→ Γ̃ij = Γij ; Γ̃i5 = Γi5, Γ̃i6 = Γi6,
(39)

but Γ̃56 = Γ56 − (λm) dU. (40)

3 Vectors θ̃
A

and η̃A after the symmetry breaking and under the same
conditions become

θ̃
A

= dϕA + ΓAC ∧ ϕC︸ ︷︷ ︸
θA

+ κABϕ
B ⇒ b.o.s.,

θ̃
i

= θi = 0 + Γi5m+ 0⇒ θi = Γi5m,

θ̃
5

= 0 = 0 + 0 = 0,

η̃A = dψA + ΓAC ∧ ψC︸ ︷︷ ︸
θA

+ κABψ
B ⇒ b.o.s.,

η̃i = ηi = 0− Γi6λ+ 0⇒ ηi = −Γi6λ,

η̃6 = η6 = 0

and evidently µi5 = µi6 = 0.
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4 Consequently from the last points, curvatures becomes to

Rij = Rij{} +m−2θi ∧ θj + λ−2ηi ∧ ηj , (41)

Ri5 = m−1

 Dθi︷ ︸︸ ︷
dθi + ωij ∧ θj +

(m
λ

)
ηi ∧ Γ65


= m−1

[
Dθi − m

λ
ηi ∧ Γ65

]
, (42)

Ri6 = −λ−1

[
Dηi −

(m
λ

)−1
θi ∧ Γ56

]
, (43)

R56 = dΓ56 + (mλ)−1 θi ∧ ηi, (44)

where clearly D is the SO(1, 3) covariant derivative.

5 The tensor responsible of the symmetry breaking becomes to

µij = −2ρsaλmεijkl

(
θk ∧ ηl + θk ∧ θl + ηk ∧ ηl

)
(45)

µ56 = −ρsbε56λmdU. (46)

6 Consequently, with all ingredients at hand, the action will be

S =

∫
µAB ∧RAB =

∫
µij ∧Rij︸ ︷︷ ︸
S1

+

∫
µ56 ∧R56︸ ︷︷ ︸

S2

, (47)

where

S1 = −2

∫
ρsaεijkl

(
θk ∧ ηl + θk ∧ θl + ηk ∧ ηl

)
∧
(
λmRij

{} +
λ

m
θi ∧ θj +

m

λ
ηi ∧ ηj

)
= −2

∫
ρsaεijkl

(
θk ∧ ηl ∧ λmRij

{} + θk ∧ θl ∧ λmRij
{} + ηk ∧ ηl ∧ λmRij

{}

)
− 2

∫
ρsaεijkl

(
θk ∧ ηl ∧

λ

m
θi ∧ θj + θk ∧ θl ∧

λ

m
θi ∧ θj + ηk ∧ ηl ∧

λ

m
θi ∧ θj

)
− 2

∫
ρsaεijkl

(
θk ∧ ηl ∧

m

λ
ηi ∧ ηj + θk ∧ θl ∧

m

λ
ηi ∧ ηj + ηk ∧ ηl ∧

m

λ
ηi ∧ ηj

)
and

S2 = −λm
∫
ρsbε56 ∧

(
dΓ56 + (mλ)−1 θi ∧ ηi

)
.

7 At this point (the mathematical justification will come later) we can
naturally associate the tetrad field with the θ − form

θk ∼ ekaωa (48)
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consequently a metric can be induced in M4:

ηab = gjke
j
ae
k
b , gjk = ηabe

a
j e
b
k, ekae

b
k = δab , etc., (49)

where ηjk is the Minkowsky metric. That allows us to up and to down
indices, and ηi with the following symmetry typical of a SU (2, 2)
Clifford structure

ηk ∼ fkaωa, (50)

eajf
k
a glk = flj = −fjl (51)

that consequently allows us to introduce the electromagnetic field
(that will be proportional to flj) into the model.

8 So we can re-write the action as

S1 = −2

∫
ρsaεijkl

(
θk ∧ ηl + θk ∧ θl + ηk ∧ ηl

)
∧
(
λmRij

{} +
λ

m
θi ∧ θj +

m

λ
ηi ∧ ηj

)
= −2

∫
ρsa

[
λm

(
fijR

ij
{} +

(
gij + fki fkj

)
Rij
{}

)
+

(
λ

m
+
m

λ

)
fkjfkj

+

(
λ

m

√
g +

m

λ

√
f

)]
d4x. (52)

In the above expression we have taken into account the following:
i) terms ∼ η ∧ η ∧ η ∧ θ and η ∧ θ ∧ θ ∧ θ vanish;

ii) terms ∼ η ∧ η ∧ θ ∧ θ and η ∧ η ∧ θ ∧ θ lead to → fkjfkj ;

iii) term ∼ εijklθk ∧ ηl ∧Rij{} leads → fijR
ij
{} picking the antisymmetric

part of the generalized Ricci tensor (containing torsion);

iv) term ∼ εijkl
(
θk ∧ θl + ηk ∧ ηl

)
Rij{} leads to →

(
gij + fki fkj

)
Rij{}

picking the symmetric part of the generalized Ricci tensor (containing
Einstein-Hilbert plus quadratic torsion term);

v) terms ∼ η ∧ η ∧ η ∧ η and θ ∧ θ ∧ θ ∧ θ lead to the volume elements√
f and

√
g, respectively, where we defined as usual g ≡ Det (glk) and

f ≡ Det (flk) =
(
f∗lkf

lk
)2

.

5.3. A = m (x) and B = λ (x) : Spontaneous subspace

If the coefficients A = m (x) and B = λ (x) are not constants but functions
of the coordinates we have

dξ → d
(
λ2m2

)
= 2d (λm) (53)

and
DκAB → d (λm) εαβ ∧ dU. (54)
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Consequently from the following explicit computations

S̃ =

∫
µ̃AB ∧ R̃AB (55)

= S +

∫
1

2
ρsaκAB ∧RAB ∧ dξ +

∫
µAB ∧ DκAB

= S −
∫

1

2
ρsaR

AB ∧ κAB ∧ dξ +

∫
µAB ∧ DκAB

= S −
∫

1

2
ρsaRαβε

αβλmdU ∧ 2d (λm) +

∫
µαβε

αβd (λm) ∧ dU

= S +

∫
1

2
ρsaRαβε

αβλm2d (λm) ∧ dU +

∫
µαβε

αβd (λm) ∧ dU,

S̃ = S +

∫
[µαβ + ρsaRαβλm] εαβd (λm) ∧ dU.

we obtain the required condition:

S̃ = S if

µαβ = −ρsaRαβλm, (56)

then we see that µAB takes the place of induced metric and is proportional
to the curvature

Rαβ = Λµαβ (57)

with Λ = − (ρsaλm)−1 . (58)

Note that we have now a four-dimensional spacetime plus the above ”inter-
nal” space of a constant curvature. This point is very important as a new
compactification-like mechanism

6. Supergravity as a gauge theory and topological QFT

In previous works we have shown, by means of a toy model, that there
exists a supersymmetric analog of the above symmetry breaking mechanism
coming from the topological QFT. Here we recall some of the above ideas
in order to see clearly the analogy between the group structures of the
simplest supersymmetric case, Osp (4), and of the classical conformal group
SO (2, 4).

The starting point is the super SL(2C) superalgebra (strictly speaking
Osp(4))

[MAB,MCD] = εC (AMB)D + εD (AMB)C ,

[MAB, QC ] = εC (AQB) , {QA, QB} = 2MAB. (59)
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Here the indices A,B,C... stay for α, β, γ...
(
.
α,

.
β,

.
γ...
)

spinor indices:

α, β
(
.
α,

.
β
)

= 1, 2
( .

1,
.
2
)

in the Van der Werden spinor notation. We define

the superconnection A due the following ”gauging”

ApTp ≡ ωα
.
βM

α
.
β

+ ωαβMαβ + ω
.
α

.
βM .

α
.
β

+ ωαQα − ω
.
αQ .

α, (60)

where (ωM) define a ten dimensional bosonic manifold and p ≡multi-index,
as usual. Analogically the super-curvature is defined by F ≡ F pTp with
the following detailed structure

F (M)AB = dωAB + ωAC ∧ ωCB + ωA ∧ ωB, (61)

F (Q)A = dωA + ωAC ∧ ωC . (62)

From (60) is easy to see, that there are a bosonic part and a fermionic
one associated with the even and odd generators of the superalgebra. Our
proposal for the ”toy” action was (as before for SO(2, 4)) as follows

S =

∫
F p ∧ µp, (63)

where the tensor µp (that plays the role of a Osp (4) diagonal metric as in
the Mansouri proposal) is defined as

µ
α

.
β

= ζα ∧ ζ .
β

µαβ = ζα ∧ ζβ µα = νζα etc. (64)

with ζα

(
ζ .
β

)
anti-commuting spinors (suitable basis) and ν the parameter

of the breaking of super SL(2C) (Osp (4)) to SL(2C) symmetry of µp.
Notice that the introduction of the parameter ν means that we are not
take care in the particular dynamics to break the symmetry.

In order to obtain dynamical equations of the theory, we proceed to
perform the variation of the proposed action (63)

δS =

∫
δF p ∧ µp + F p ∧ δµp

=

∫
dAµp ∧ δAp + F p ∧ δµp, (65)

where dA is the exterior derivative with respect to the super-SL (2C) con-
nection and: δF = dAδA have been used. Then, as the result, the dynamics
are described by

dAµ = 0, F = 0. (66)

3Corresponding to the number of generators of SO (4, 1) or SO (3, 2) that define the
group manifold

4In general this tensor has the same structure that the Cartan-Killing metric of the
group under consideration.
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The fist equation claims that µ is covariantly constant with respect to
the super SL (2C) connection. This fact will be very important when the
super SL (2C) symmetry breaks down to SL (2C) because dAµ = dAµAB +
dAµA = 0, a soldering form will appear. The second equation gives the
condition for a super Cartan connection A = ωAB + ωA to be flat, as it is
easy to see from the reductive components of above expressions

F (M)AB = RAB + ωA ∧ ωB = 0, (67)

F (Q)A = dωA + ωAC ∧ ωC = dωω
A = 0,

where now dω is the exterior derivative with respect to the SL (2C) con-
nection and RAB ≡ dωAB + ωAC ∧ ωCB is the SL (2C) curvature. Then

F = 0⇔ RAB + ωA ∧ ωB = 0 and dωω
A = 0 (68)

the second condition says that the SL (2C) connection is super-torsion
free. The first says not that the SL (2C) connection is flat but that it is
homogeneous with a cosmological constant related to the explicit structure
of the Cartan forms ωA, as we will see when the super SL (2C) action is
reduced to the Volkov-Pashnev model [42].

6.1. The geometrical reduction: extended symplectic super-me-
trics

6.1.1. Example: Volkov-Pashnev metric

The super-metric under consideration, proposed by Volkov and Pashnev
in [42], is the simplest example of symplectic (super) metrics induced by
the breaking of symmetry from a pure topological first order action. It
can be obtained from the Osp (4) (superSL (2C)) action via the following
procedure.

i) The Inönu-Wigner contraction [43] in order to pass from SL (2C) to
the super-Poincare algebra (corresponding to the original symmetry of the
model of refs. [44, 42]) then, the even part of the curvature is split into a R3,1

part Rα
.
β and a SO (3, 1) part Rαβ

(
R

.
α

.
β
)

associated with the remaining six

generators of the original five dimensional SL (2C) group. This fact is easily
realized knowing that the underlying geometry is reductive: SL (2C) ∼
SO (4, 1) → SO (3, 1) + R3,1. Than we rewrite the superalgebra (59) as

[M,M ] ∼M [M,Π] ∼ Π [Π,Π] ∼M
[M,S] ∼ S [Π, S] ∼ S {S, S} ∼M + Π

(69)

with Π ∼M
α

.
β
, M ∼Mαβ

(
M .
α

.
β

)
, and re-scale m2Π = P and mS = Q. In

the limit m → 0, one recovers the super Poincare algebra. Note that one
does not re-scale M since one wants to keep [M,M ] ∼M Lorentz algebra,
that also is a symmetry of (1).
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ii) The spontaneous breaking of the super SL (2C) down to the SL (2C)
symmetry of µp (e.g. ν → 0 in µp) of such manner that the even part of

the super SL (2C) action F (M)AB remains.
After these evaluations, have been explicitly realized that the even part

of the original super SL (2C) action (now a super-Poincare invariant) can
be related with the original metric (1) as follows:

R (M) +R (P ) + ωαωα − ω
.
αω .

α → ωµωµ + aωαωα − a∗ω
.
αω .

α |V P . (70)

Note that there is mapping R (M)+R (P )→ ωµωµ |V P that is well defined
and can be realized of different forms, and the map of interest here ωαωα−
ω

.
αω .

α → aωαωα − a∗ω
.
αω .

α |V P that associate the Cartan forms of the
original super SL (2C) action (63) with the Cartan forms of the Volkov-

Pashnev supermodel: ωα = (a)1/2 ωα |V P , ω
.
α = (a∗)1/2 ω

.
α |V P . Then, the

origin of the coefficients a and a∗ becomes clear from the geometrical point
of view.

From the first condition in (68) and the association (70) it is not
difficult to see that, as in the case of the spacetime cosmological con-
stant Λ : R = Λ

3 e ∧ e (e ≡ space− time tetrad), there is a cosmological
term from the superspace related to the complex parameters a and a∗:

R = −
(
aωαωα − a∗ω

.
αω .

α

)
and is easily to see from the minus sign in

above expression, why for supersymmetric (supergravity) models it is more
natural to use SO (3, 2) instead of SO (4, 1).

On the associated spinorial action in the action (63), notice that the
role of this part is constrained by the nature of νζα in µp:

i) If they are of the same nature of the ωα this term is a total derivative,
has not influence into the equations of motion, then the action proposed
by Volkov and Pashnev in [42] has the correct fermionic form.

ii) If they are not with the same SL (2C) invariance that the ωα, the
symmetry of the original model has been modified. In this direction a
relativistic supersymmetric model for particles was proposed in ref. [45]
considering an N-extended Minkowsky superspace and introducing central
charges to the superalgebra. Hence the underlying rigid symmetry gets
enlarged to N-extended super-Poincare algebra. Considering for our case
similar superextension that in ref. [45] we can introduce the following new
action

S = −m
∫ τ2

τ1
dτ

√
◦
ωµ
◦
ωµ + a

.
θ
α .
θα − a∗

.

θ

.
α .

θ .
α + i(θαiAij

.
θ
j

α − θ
.
αi
Aij

.

θ
j
.
α)

=

∫ τ2

τ1
dτL

(
x, θ, θ

)
(71)

that is the super-extended version of the superparticle model proposed
in [42] with the addition of a first order fermionic part. The matrix tensor
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Aij introduce the symplectic structure of such manner that now ζαi ∼ Aijθjα
is not covariantly constant under dω. Note that the ”Dirac-like” fermionic
part is obviously inside the square root because it is a part of the full
curvature, fact that was not advertised by the authors in [45] (see also [29])
that not take account on the geometrical origin of the action. An interesting
point is to perform the same quantization that in the first part of the
research given in [44] in order to obtain and compare the spectrum of
physical states with the obtained in ref. [45]. This issue will be presented
elsewhere [46].

The spontaneous symmetry breaking happens here because the param-
eter has no dynamics. But this doesn’t happen in the nonlinear realization
approach where the parameters have a particular dynamics associated with
the spacetime coordinates.

7. Quadratic in RAB

The previous action, linear in the generalized curvature, has some draw-
backs that make necessary the introduction of additional ”subsidiary condi-
tions” due that the curvatures Ri5 and Ri6 play not role into the linear/first
order action. Such curvatures have very important information about the
dynamics of θ and η fields. In order to simplify the equations of motion we
define

Γ56 ≡ A, (72)

m−1θi ≡ θ̃
i
, (73)

λ−1ηi ≡ η̃i, (74)

and as always

Rij = Rij{} +m−2θi ∧ θj + λ−2ηi ∧ ηj (75)

with the SO (1, 3) curvature Rij{} = dωij + ωiλ ∧ ωλj . Consequently from

the quadratic Lagrangian density

S =

∫
RAB ∧RAB (76)
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we obtain the following equations of motion:

δ
(
RAB ∧RAB

)
δθi

→ D
(
Dθ̃j

)
+ 2Rij ∧ θ̃

i
− θ̃

i
∧ η̃i ∧ η̃j + θ̃j ∧A ∧A = 0,

(77)

δ
(
RAB ∧RAB

)
δηi

→ D
(
Dη̃j

)
+ 2Rjk ∧ η̃k − θ̃

i
∧ η̃i ∧ θ̃j + η̃j ∧A ∧A = 0,

(78)

δ
(
RAB ∧RAB

)
δΓ56

→ θ̃
i
∧ θ̃i = η̃i ∧ η̃i, (79)

δ
(
RAB ∧RAB

)
δωij

→ −DRkl +Dθ̃k ∧ θ̃l +Dη̃k ∧ η̃l + θ̃k ∧ η̃l ∧A = 0. (80)

7.1. Maxwell equations and the electromagnetic field

As we claim before we can identify

θi ≡ eiµdxµ, (81)

ηi ≡ f iµdxµ (82)

with the symmetries

eiµe
ν
i = δνµ, e

i
µeiν = gµν = gνµ (83)

and
f iµf

ν
i = δνµ, eiνf

i
µ = fµν = −fνµ (84)

such that the geometrical (Bianchi) condition

∇[ρ fµν] = ∇∗ρfρν = 0 (85)

or in the language of differential forms

D
(
θ̃
i
∧ η̃i

)
= 0 (86)

holds, enforce to the curvatures Ri6 and Ri5 to be null. And conversely

if Ri6 and Ri5 are zero then D
(
θ̃
i
∧ η̃i

)
= 0 or equivalently ∇[ρ fµν] =

∇∗ρfρν = 0.

Proof. From expressions (42,43), namely: Ri5 =
[
Dθ̃

i
− η̃i ∧ Γ65

]
and

Ri6 =
[
−Dη̃i + θ̃

i
∧ Γ56

]
we make

Ri5 ∧ η̃i + θ̃i ∧Ri6 = D
(
θ̃
i
∧ η̃i

)
+
(
η̃i ∧ Γ56

)
∧ η̃i + θ̃i ∧

(
θ̃
i
∧ Γ56

)
,

(87)

Ri5 ∧ η̃i + θ̃i ∧Ri6 = D
(
θ̃
i
∧ η̃i

)
. (88)
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In the last line we used the constraint given by eq. (79) Consequently if Ri6

and Ri5 are zero then D
(
θ̃
i
∧ η̃i

)
= 0 or equivalently ∇[ρ fµν] = ∇∗ρfρν = 0

and vice versa.

Corollary 1 Note that the vanishing of the R56 curvature (that transforms
as a Lorentz scalar) does not modify the equation of motion for Γ56 and
simultaneously defines the electromagnetic field as

R56 = dΓ56 + (mλ)−1 θi ∧ ηi = 0, (89)

⇒ dA− F = 0. (90)

7.2. Equations of motion in components and symmetries

Let us define

Rij{}µν = ∂µω
ij
ν − ∂νωijµ + ωiµkω

kj
ν − ωkjµ ωiνk, (91)

T iµν = ∂µe
i
ν − ∂νeiµ + ωiµ ke

k
ν − ω i

ν ke
k
µ, (92)

Siµν = ∂µf
i
ν − ∂νf iµ + ωiµ kf

k
ν − ω i

ν kf
k
µ . (93)

Note that Siµν is a totally antisymmetric torsion field due the symmetry of

f iνdx
ν ≡ ηi. Consequently the equations of motion in components become

∇µ
[√
|g|Rijµν

]
+
√
|g|
(
−m−2T jiν + λ−2Sjiν

)
−
√
|g| (λm)−1 f [i νA i] = 0,

∇µ
[√
|g|
(
Rijµν{} −m

−2e[iµe j]ν + λ−2f [iµf j]ν
)]

+
√
|g|
(
−m−2T jiν + λ−2Sjiν

)
−
√
|g| (λm)−1 f [i νA i] = 0,

∇µ
(√
|g|T jµv

)
+
√
|g|
(
Rjν{} −m

−2ejν +AiAν
)

= 0,

∇µ
(√
|g|Sjµi

)
+
√
|g|
(
Rij{} − λ

−2f ij +A[iA j]
)

= 0,

∇[µAν] = Fµν = (λm)−1 Fµν ,

∇[ρFµν] = 0. (94)

8. Nonlinear realizations viewpoint

Notice that in our case eqs. (81,82) identify θi ∼ ei and ηi ∼ f i being the
table below completely understood. Also the Γ65 is identified with the g of
E. Ivanov and J. Niederle [14, 15].
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this work [14, 15]

Rij Rij{} +m−2θi ∧ θj + λ−2ηi ∧ ηj Rij{} + 4gei ∧ f j

Ri5 m−1
[
Dθi − m

λ η
i ∧ Γ65

]
Dei + 2gei ∧ g

Ri6 −λ−1
[
Dηi −

(
m
λ

)−1
θi ∧ Γ56

]
Df i − 2gf i ∧ g

R56 dΓ56 + (mλ)−1 θi ∧ ηi dg + 4gei ∧ f i
DS/ADS reduction Yes No

Algebra and transformations in the case of the work of Ivanov and
Niederle are different due different definitions of the generators of the
SO(2, 4) algebra, however the meaning of g that it is associated to the
connection Γ65 remains obscure for us because the second Cartan structure
equations Ri5 and Ri6. Notice that, although the group theoretical view-
point in the case of the simoultaneous nonlinear realization of the affine
and conformal group [50] to obtain Einstein gravity are more or less clear,
the pure geometrical picture is still hard to recognize due the factorization
problem and the orthogonality between coset elements and the correspond-
ing elements of the stability subgroup.

9. Discussion

In this work we introduced two geometrical models: one linear and another
one quadratic in curvature. Both models are based on the SO(2, 4) group.
Dynamical breaking of this symmetry was considered. In both cases we
introduced coherent states of the Klauder-Perelomov type, which as de-
fined by the action of a group (generally a Lie group) will be invariant to
the stability subgroup of the respective coset being related to the possible
extension of the connection which maintains the proposed action invariant.

The linear action, unlike the cases of West or even McDowell and
Mansouri[41], uses a symmetry breaking tensor that is dynamic and un-
related to a particular metric. Such a tensor depends on the introduced
vectors (i.e. the coherent states) that intervene in the extension of the
permissible symmetries of the original connection. Only some components
of the curvature defined by the second structure equation of Cartan, are
involved in the action, leaving the remaining ones as a system of indepen-
dent or ignorable equations in the final dynamics. The quadratic action,
however, is independent of any additional structure or geometric artifacts
and all the curvatures (e.g. all the geometrical equations for the fields) play
a role in the final action (Lagrangian of the theory).

With regard to the parameters that come into play λ and m (one plays
the role of cosmological constant and mass respectively) we saw that in
the case of linear action if they are taken dependent on the coordinates
and under the conditions of invariance of the action, a new spontaneous
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compactification mechanism is defined in the subspace invariant under the
stability subgroup.

Following this line of research, the steps to follow in terms of possible
physical applications would be to point to the scenarios of the traditional
GUT theories, the derivation of the symmetries of the standard model
together with the gravitational ones and to obtain in a precise way the
underlying fundamental theory. This will be important, for example, to
solve the problem of hierarchies and fundamental constants, the masses of
physical states and their interaction.

Also an important point under research is the noncommutative exten-
sions using the coherent states structure of the connections, due that if
there are coherent states a convolutory product (e.g. star product) can be
stablished.
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