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Abstract

We discuss the existence, properties and construction (analytical and numer-
ical) of hairy black holes with fermionic matter in asymptotically anti-de-Sitter
space. The negative cosmological constant makes hairy black holes stable, and the
nucleation mechanism can make the formation of hair at the horizon energetically
and entropically preferable to conventional black holes. The difficulties intrinsic to
fermions at finite density – the Pauli principle and exchange interactions – require
some drastic approximations in calculating the stress-energy tensor and geome-
try. We will consider several methods on the market – Hartree-Fock, WKB, and
fluid-mechanical methods, and consider the dual field theories of these construc-
tions. Then we will apply the same methods to the construction of wormholes;
fermions are a natural candidate for wormhole source matter as they have a Dirac
sea of negative energies, and negative energy-momentum density is the condition
for wormhole formation. The field theory interpretation of wormholes is still open
but has to do with strongly entangled systems. The paper combines a pedagogical
introduction to the basic methods and results (obtained in the last 10+ years)
with an account of fresh research results, mainly on the wormhole applications
and non-planar black holes.

1. Introduction

AdS black holes are a favorite topic, not only in relation to holography but
also in general: AdS space behaves like a potential box, the cosmological
constant provides an effective repulsive force at large distances and the ex-
istence of a boundary at spatial infinity makes bound states possible. All of
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this brings about the famous result that hairy black holes are indisputably
possible, and well-studied. In full (global) AdS space, one may have small
black holes, which barely see the boundary and radiate like in asymptot-
ically flat space, and large black holes, which reach an equilibrium state
with the Hawking radiation at given temperature and remain stable for-
ever (eternal AdS black holes). We will focus on the latter, as they can be
treated as (semi)classical stationary systems. Clearly, just like the Hawk-
ing radiation, matter and gauge fields can likewise equilibrate between the
black hole horizon and AdS boundary, possibly forming hair – by definition,
it means nonzero density of some field (and possibly nonzero expectation
values of other operators, like charge density, spin, etc) at the horizon itself.
This in turn means that the geometry changes as opposed to the no-hair
case: the hair itself enters the stress-energy tensor, and the outcome is a
hairy black hole geometry, where a horizon still exists but with a different
metric. At zero temperature, hair tends to remove extremal black holes in
favor of zero-area horizons, with zero Bekenstein-Hawking entropy. We will
soon discuss several explicit examples of this phenomenon.

The above story acquires an additional dimension thanks primarily to
the AdS/CFT correspondence (gauge/gravity duality) [1, 2, 3] – the fact
that the bulk gravity physics is equivalent to a quantum field theory in flat
space in one dimension less, whose operators act as boundary sources of
the AdS (bulk) fields. The actions in AdS (with field Φ) and in CFT (with
field O, which acts as a boundary source to Φ) are equal:

SAdS = SCFT

SAdS =

∫
DΦ exp

(
−
∫
AdS

dD+1x
√
−gLAdS (Φ, ∂µΦ) +

∮
∂

dDx
√
−hOΦ

)
SCFT =

∫
DO exp

(
−
∫
dDxLCFT (O)

)
, (1)

where we have denoted by ∂ the boundary of the AdS space, gµν is the
AdS metric and hµν is the induced metric at the boundary. From now
on, integrals over the bulk of AdS will be dnoted just by

∫
, understanding

that the integral is over the whole space. At this place we do not intend
to explain AdS/CFT and its applications in any detail; suffice to say that
one can obtain thermodynamic potentials and correlation functions in field
theory, which has found important applications in condensed matter theory,
quantum chromodynamics and conformal field theory. Interested readers
can consult [4, 5, 6] for reviews. In this work we deal with the gravity side
of the correspondence – the formation of a hairy black hole with fermionic
matter, which corresponds to a finite electron density phase in field theory.
We assume the familiarity with the basic notions of AdS space and quantum
field theory in curved spacetime, for example at the level of [7] and [8],
respectively.

Mathematically, the topic of this review is the solution of the coupled
Einstein-Maxwell-Dirac system with the total action SAdS = Sbulk + S∂ .
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The bulk action reads:

Sbulk = SE + SM + SDir

SE =

∫
d4x
√
−g (R+ 6)

SM = −
∫
d4x
√
−g F̂

2

4

SDir = −
∫
d4x
√
−g

(
1

2
Ψ̄Dµe

µ
aΓaΨ +

1

2
Ψ̄eµaΓaΨ +mΨ̄Ψ

)
. (2)

Here, F̂µν = ∂µAν−∂νAµ is the electromagnetic (EM) field strength tensor,
and the the cosmological constant in AdS4 is 6/L2, where the AdS radius
L = 1 is set to unity, as we will mainly work on the Poincare patch of
AdS space, so all other dimensionful quantities can be expressed in terms
of L. The Dirac bispinor Ψ has mass m and charge q, and the covariant
derivative

Dµ = eaµDa = ∂µ −
ı

8

[
Γa,Γb

]
ωµab − ıqAµ (3)

depends on the spin connection ωµab and the gauge field Aµ, and the gamma

matrices satisfy the usual relations
[
Γa,Γb

]
= 2ηab, with the Minkowski

metric η. We will be using the mostly plus convention. Obviously, Ψ = 0 is
a solution, and in this case we get a Schwarzschild black hole if the EM field
is also zero, or a charged Reissner-Nordstrom (RN) black hole for nonzero
field strength. The question is, are there other solutions, with nonzero pro-
file Ψ? Such solutions describe hairy black holes at finite temperature: the
horizon is typically still there, but the geometry is changed. At zero tem-
perature, the black hole might disappear. Since AdS space has a boundary,
there is also a boundary contribution to the action, as in (1), depending on
extrinsic curvature K, boundary cosmological constant λ and the boundary
values of the fields:

S∂ =

∮
∂
d3x
√
−h

[
K − λ− 1

2
nµAνF̂

µν − 1

2
Ψ̄Ψ

]
. (4)

The classical equations of motion do not depend on the boundary action.
However, S∂ is still important (1) to make sure there is a good action
principle, i.e., that the on-shell solutions are indeed minima of the action1

(2) to regularize any UV divergences (3) to get correct thermodynamics.
The last point will be particularly important: one way to see that the hairy
black hole and not the bald black hole is the true vacuum will be the fact
that the action on the hairy solution is lower.

Solving the system (2) is a problem in quantum field theory at finite
density. We work with classical general relativity (GR) and classical EM

1Remember that the (bulk) Euler-Lagrange equations are only a necessary condition
for the minimum of the action.
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field, but fermions are never classical ; this is the first important lesson.
The Pauli principle always introduces nonlocal correlations which show as
the exchange interaction. Another way of saying this is that the pressure of
a fermionic gas or fluid always includes the quantum contribution which is
absent in both classical and bosonic gas; that is the reason that organized
matter such as stars, planets, chairs and notebooks has rigidity and does
not collapse onto itself. Therefore, even though we do gravity at h̄ = 0, the
fermions even at leading order need to be tackled quantum-mechanically.
This means calculating the fermionic determinant :

ZDir =

∫
DΨ̄DΨe−SDir ” = ” [det (Dµe

µ
aΓa + eµaΓaDµ +m)]1/2 . (5)

We have put the equality sign under quotation marks because the determi-
nant is actually the product of the eigenenergies of all the modes (an infinity
of them), which is not only badly divergent (that could be regulated) but
is also impossible to calculate because of the fermion sign problem, the
fact that the fermionic modes enter the path integral with a sign that can
be plus or minus. This makes the measure in the path integral (5) non-
probabilistic and makes it impossible to expand around a classical solution
in a controlled way. Fortunately, the AdS metric turns out to simplify the
problem enough that it can be tackled in a way which is tractable and,
while of course not exact, can be systematically improved in a perturba-
tive way. This is in fact the motivation behind AdS/CFT modelling of
strongly correlated electron systems: the fermion sign problem is fatal for
strongly coupled field theories in flat space, but in GR with AdS boundary
conditions it transforms into a difficult but doable task.

Is the journey worthwhile? In line with the broad scope of the Belgrade
Mathematical Physics Meetings, we have anticipated a broad readership of
this paper and thus we have decided to give a very general and perhaps
rather dry introduction to the topic of fermionic hairy black holes. This
necessarily means that we will not touch upon the many interesting appli-
cations: AdS/CFT and its applications to quantum chromodynamics and
condensed matter physics, the black hole information problem, the critical
phenomena in gravitational collapse and the black hole solutions in string
theory. We do discuss one special topic that we currently find very inter-
esting: hairy wormholes generated by fermion matter, where many of the
methods used for hairy black holes can be successfully applied. The main
task of the paper is to provide a tutorial on the basic methodology and
calculation techniques, bringing the reader to the point that he can under-
stand and repeat the calculations from the literature and start doing his
own. The existing literature is rather heterogenuous and there is no single
text to recommend. We will give the references we deem particularly use-
ful throughout the paper, without the pretention of being exhaustive; the
choice of references is certainly dictated also by our prejudices and tastes.

Plan of the paper. In Section 2 we first explain the instabilities of AdS
space and AdS black holes to a nonzero density profile of fermions, and in-
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troduce the basic concepts that will keep appearing throughout the paper:
effective potential and the bound states of the fermionic wavefunctions. In
Section 3 we first treat the problem in the consistent one-loop (Hartree-
Fock) approximation, calculating the determinant (5) by definition, from
the individual wavefunctions for different states. We find this job surpris-
ingly difficult – it is still an active research area. But we are able to give a
qualitative picture of the outcome and sketch the phase diagram, depend-
ing on the chemical potential µ and fermion mass and charge m, q. As
we move toward the high-fermion-density corner of the phase diagram, the
things simplify. The simplest and ”most classical” limit of the problem is
the limit of large density. It is a rule of thumb that for fermions, the role of
interactions diminishes as the density grows. At high density, WKB approx-
imation works very well. At highest densities, we find semiclassical fluid
with an equation of state that takes into account the fermionic pressure,
similar in spirit to the Oppenheimer-Volkov equations for neutron stars.
In section 4 we apply these methods to a different topic – hairy worm-
holes instead of black holes. This problem has recently gained notoriety
and might carry some important messages for the black hole information
problem. The final section sums up the conclusions.

2. Planar AdS black holes and fermion nucleation

In this and the next section we will focus on large planar black holes on the
Poincare patch of AdS space. Large black holes can reach equilibrium with
the AdS boundary so they do not emit Hawking radiation and can exist
eternally. The Poincare patch of AdS4 space is a coordinate chart with a
single boundary on one end and interior on the other end. It does not cover
the whole AdS space but is simpler to work with than global AdS and is
good enough to desribe the instability at the horizon. The metric of pure
AdS space witout a black hole is given by

ds2 = r2
(
−dt2 + d~x2

)
+
dr2

r2
=

1

z2

(
−dt2 + d~x2 + dz2

)
(6)

where r = 1/z is the radial coordinate, t is time and ~x = (x, y) are the
transverse coordinates. The AdS boundary is at r = ∞ (z = 0), and the
interior is at r = 0 (z = ∞). From now on we will mainly use the z
coordinate; we will always specify explicitly if a different radial coordinate
is used. In AdS/CFT, the radial coordinate corresponds to the energy scale
in field theory: the near-boundary region encodes for the physics at high
energies, in the ultraviolet (UV), and the deep interior, with z large, is the
infrared (IR). Even though we do not consider the CFT dual here, we will
still adopt the UV/IR terminology.

In the presence of a point electric charge e we get a Reissner-Nordstrom
(RN) black hole with the horizon at zh = 1, with charge e, mass M and
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temperature T :

ds2 =
1

z2

(
−f(z)dt2 + d~x2 +

dz2

f(z)

)
, f(z) = 1−Mz3 + e2z4

M = z3
h + e2, A =

ezh
2
√
π

(1− z/zh)dt, T =
3zh
4π

(
1− e2

3z4
h

)
(7)

For e = 0 we get the Schwarzschild AdS black hole, and for e =
√

3z2
h

the black hole becomes extremal, with temperature T = 0. To see this,
remember that the black hole temperature is given by f(z → zH) = 4πT (z−
zH) + . . ., so plugging in f from above we indeed get the correct expression
for T . Importantly, the near-horizon region of a black hole is an AdS space
[7]. This IR AdS space (near z = zh) has a priori nothing to do with the
AdS asymptotics in the UV (near z = 0); it is there also for black holes in
flat or dS space. At T = 0, rescaling z − e/

√
3 7→ 1/6εξ and expanding in

ε to lowest order gives the metric

ds2 =
1

6
(−dt2 + dξ2) +

e2

3
d~x2, At =

1√
6ξ
. (8)

The is AdS2×R2 geometry, a direct product of AdS with a plane. At finite
temperature, a similar rescaling can be worked out, yielding again an AdS2

throat. Since the throat describes the near-horizon region, instabilities of
the black hole can be figured out from possible instabilities of this IR AdS
space. Once again, this is not the whole AdS4, which is always stable far
from the horizon, in the UV (otherwise our whole classical gravity approach
crumbles down), it is just a region near the horizon, in IR.

In order to write the equations of motion, we have to choose a basis for
the gamma matrices and the form of the Dirac bispinor (remember that
only two out of four components are really independent degrees of freedom).
A convenient representation is

Γ0 = σ1 ⊗ ıσ2, Γ1 = σ1 ⊗ σ1,Γ
2 = σ1 ⊗ σ3, Γz = σ3 ⊗ 1̂. (9)

so that the Dirac equation in a spherically symmetric metric defined as
diag(gtt, gii, gii, gzz) gives two equivalent decoupled pairs of equations. Tak-
ing the Dirac bispinor in the form Ψ = (ψ1, χ1, ıχ2, ıψ2)T , the equations for
ψ1,2 read [9, 10]:2

∂zψ1,2 ± m̂ψ1,2 −
(
∓Ê + k̂

)
ψ2,1 = 0 (10)

m̂ ≡ m√gzz, µ̂ ≡
√
gzz
−gtt

At, Ê ≡ qµ̂+ E

√
gzz
−gtt

, k̂ ≡
√
gzz
gii
k. (11)

2Since only two components of the Dirac bispinor are independent, the system for
χ1,2 yields no new information.
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We have Fourier-transformed the derivatives over time and transverse spa-
tial dimensions as ∂t = −ıω, ∂x = ıkx, ∂y = ıky, and we have exploited

the spherical symmetry to set kx = k, ky = 0. The quantities Ê, k̂, µ̂ can
be informally interpreted as ”local” values of the energy, momentum and
chemical potential, respectively. The ”local” values equal E, k, µ at the
AdS boundary, grow monotonously toward the horizon and diverge there, a
consequence of the infinite redshift seen by a faraway observer. An impor-
tant idea is to consider the Schrödinger form of the Dirac equation instead,
differentiating (10) once with respect to z, decoupling the equations for
ψ1,2, and elliminating the first derivatives ψ′1,2 by introducing the tortoise
coordinate s instead of z. The resulting picture is that of a zero-energy
Schrödinger equation, of the form ∂2

sψ1,2 − Veff(s)ψ1,2 = 0, in an effective
potential Veff(s).3 Near the horizon, the potential is constant at leading
order [11]:

Veff(s→ −∞) =
m2 + 12k2/µ2 − 2q2

(q/
√

2 + k)2
+ . . . (12)

It is true that the Schrödinger form is only a consequence of the Dirac
equation, not equivalent to it: extra conditions must be imposed on the
Schrödinger solution to make it satisfy the Dirac equation. But the effective
potential is great for qualitative insights and it contains the basic idea of
the black hole instability in a very transparent way. The near-horizon
potential can contain bound states if it is negative, hence the instability
criterion for a fermionic mode with momentum k is that the numerator of
(12) is negative. Fermions fill up the potential well starting from k = 0 up
to some maximum k for which (12) reaches zero. Therefore, the instability
first sets in when Veff is negative for k → 0, so we get our first rule-of-
thumb prediction: the black hole will be surrounded by a gas of fermions
and become hairy when

m < q
√

2. (13)

But this is just one end of the potential well; what happens at the other
end? Plugging in the pure AdS metric (6) into (12) we get

VAdS(s→ 0) =
m2 +m+ k2

(k + µ)2

1

s2
+ . . . , (14)

which is always non-negative, and grows to infinity. This is good – there is
never an instability in the far UV, and the fermionic hair can never come
arbitrarily close to the AdS boundary. It also means that bound states
in the interior will indeed exist whenever (13) is negative. The physical
picture is the following: in the presence of EM and gravitational field of
the black hole, fermions are pair-created. These pairs are virtual, and

3This is a simple exercise that we will do many times; the reader should be able to do
the necessary (straightforward) calculations leading to the expression for s(z) and Veff(s).
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they only have a finite probability of becoming long-living if the external
potential energy is large enough. In that case, bound states form, and there
is a solution of (2) with nonzero fermion density. In the literature, this is
sometimes called fermion nucleation. For scalars, similar logic leads to the
Breitenlohner-Freedman bound, which puts a constraint on the scalar mass
for the stability of the UV (with fermions, as we have seen, UV is always
stable), and in IR it similarly gives a criterion for forming hair [5]. We also
see from (14) and Fig. 1 that the potential well becomes shallower as k
grows, so the bound states only exist up to some maximum k = kF which
is really the Fermi momentum of the bulk Fermi sea.

From (12,14) we can understand the behavior of the effective potential.
In Fig. 1, we give the function V (s) in the whole space, from z = 0 (s = 0),
to z = zh (s = −∞). The fermionic modes fill the potential well until
they reach the energy E = 0. From (12), higher modes correspond to
higher momentum k. The fermionic density is thus given by a sum over
these bound states. The easiest case is in fact an extremely deep well: the
energy levels are so dense and so numerous that they can be approximated
by a continuum; this is called electron star limit. But the most interesting
regime is the one with only a few wavefunctions, which really describes the
transition to a hairy solution. This is a much harder nut to crack.
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Figure 1: Effective potential Veff , as a function of the tortoise coordinate
s ≡

∫ z
0 dzgzz(z), in the RN metric (A), and in the Lifshitz metric (B),

for q = 1, m = 0.4, µ = 1, and three momentum values increasing from
violet to blue to red: k = 1, 2, 3 (A) and k = 0, 5, 10 (B). In both cases,
the negative potential well becomes shallower and shallower and eventually
disappears as k grows, so we fill the bulk Fermi sea up from k = 0 to
some maximal k = kF . In the black hole background, the potential is
flat for s → −∞, which corresponds to the AdS2 near-horizon region and
signifies an instability as the bound states extend all the way to the horizon
(s = −∞). In the backreacted Lifshitz metric the potential grows for
s→ −∞, suggesting that deep IR is stable: the true vacuum is the Lifshitz
geometry, not RN. Taken over from [14].
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3. Fermionic hair

Now that we have convinced ourselves that hairy solutions, with finite
fermion density, have to exist, we need to solve the full system of Einstein,
Maxwell and Dirac equations to find them. Clearly, a more general ansatz
for the metric than (7) is needed now, and we will write it as

ds2 = −F (z)G(z)

z2
dt2 +

1

z2
d~x2 +

1

F (z)z2
dz2, (15)

leading to Einstein-Maxwell equations

1− F + zF ′/3− T tot
tt FG/3z

2 = 0 (16)

G′ + z(T tot
tt /F

2 + T tot
zz G) = 0 (17)

A′′t −G′/2GA′t + qn
√
G/
√
Fz3 = 0, (18)

where T tot
µν is the total stress-energy tensor, both from the electric field

(which is easy to find) and from the fermions (which is our big problem).
A typical situation in hairy problems is that formulating the physically
meaningful boundary conditions is not so easy. Notice the Einstein equa-
tions are first-order, so we need one boundary condition for each function
(F and G), whereas the Maxwell equation is second-order and requires two
boundary conditions. Let us now summarize what boundary behavior we
expect on physical grounds.

1. The AdS asymptotics for the metric and gauge field require F (z →
0), G(z → 0) = 1, At(z → 0) = µ. So far it’s all simple.

2. The main puzzle for the IR geometry is – does the horizon disappear
or not? At T = 0 we do not expect that the degenerate RN hori-
zon can survive. So we do not expect zeros in F,G but we do expect
their derivatives to vanish in order to have a smooth solution (finite
derivatives at z →∞ would likely give divergent curvature). Thus at
T = 0 we need F ′(z → ∞) = G′(z → ∞) = 0 or, in other words,
F (z → ∞) = const. + O(1/z) and likewise for G. At finite tempera-
ture, general GR arguments suggest there is a horizon at some z = zh
satisfying F ′(z → zh) = 4πT .

3. The IR behavior of the gauge field is related to the question: is all
the charge carried by the fermions, or the charge is shared between the
fermions and the horizon? The Gauss-Ostrogradsky theorem for the
AdS space, with a UV boundary and either a horizon or a smooth
far-away IR takes the form [12]:∮

∂
d3x
√
−h|z→0 ? F̂ =

∫
d4x
√
−gqn+

∮
IR
d3x

√
−hIR|z=zIR ? F̂ (19)

Here, ?F̂ is the coordinate-invariant flux of the 2-form F̂ , and hIR is
the induced metric on the surface normal to the radial direction at
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zIR = zh or zIR = ∞, depending on whether there is a horizon or
not. In principle, the IR charge might be shared between the horizon
and the fermions. However, we will find that in the semiclassical
calculation there are no solutions where the charge is shared – any
backreaction will always expell all the charge from the IR.

4. The boundary conditions for the Dirac equation present no problems
and are pretty standard in AdS space [13]. In the UV, out of the two
branches, we want the subleading one, with the motivation to preserve
the AdS asymptotics, i.e., to perturb the space as little as possible in
the UV. In particular, the near-boundary expansion of (11) gives

ψ1(z → 0) =
E + µq − k

2m− 1
A2z

5/2−m +B1z
3/2+m + . . .

ψ2(z → 0) = A2z
3/2−m +

E + µq + k

2m+ 1
B1z

5/2+m + . . . , (20)

so we pick A2 = 0, as the leading contribution for z → 0 comes
from the z3/2 term. In the IR, the metric determines the boundary
conditions: if there is a horizon, we need Ψ(z = zh)→ 0 for stability, if
not, then to avoid infinite energy density at large z we require ∂zΨ(z →
∞) = 0, for otherwise a nonconstant density profile would give rise
to a diverging curvature. The attentive reader should be alarmed:
this means two boundary conditions for each component (one in UV
and one in IR), but the equations are only first-order. The resolution
is that for given momenta, the energy is not arbitrary but fixed by
the dispersion relation E(k); thus solving the Dirac equation in an
effective potential well introducs energy quantization, as one would
expect.

What remains is to find the fermionic stress tensor. Since spinors couple
to the spin connection eµa and not directly to the metric, the stress tensor
is expressed as

Tµν =

〈
1

4
eµaΨ̄ΓaDνΨ + (µ↔ ν)

〉
, (21)

and the expectation value 〈. . .〉 reminds us that the fermions are never
classical. At zero temperature, the state is pure and can be represented as
the sum of (appropriately normalized) radial modes with energies E`, where
` is the radial quantum number, and the energies E` are all ≤ 0. At finite
temperature, the state is mixed and gets a contribution from both positive
and negative energies E`, with thermal weights w` = exp (−βE`) /Z, the
partition sum being Z =

∑
` exp(−βE`). With this in mind, we can wrote

out (21) as

Ttt = et0

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`ψ1;` + ψ†2;`ψ2;`

)
(E` + qAt)
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Tii = ei1

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`ψ1;` − ψ†2;`ψ2;`

)
k

Tzz = ez3

N∑
`=1

w`

∫ kF

0

kdk

(2π)2

(
ψ†1;`∂zψ2;` − ψ†2;`∂zψ1;`

)
. (22)

For brevity, we write ψ1,2;` ≡ ψ1,2(E`, k; z). We will consider in detail just
the T = 0 case, when the weights w` effectively just pick the ground state
and cut off all the others, but we will later discuss the results (without
details of the calculations) also at finite T . The spectrum is discrete and
gapped in the radial direction, so the integral

∫
dE/2π becomes a sum,

however in the transverse directions the system remains gapless, filling the
whole (spherical) Fermi sea in the k−momentum space, as long as the
dispersion relation E(k) = E` ≤ 0 is satisfied for some `. The highest
such k, for which E` = 0, is the Fermi momentum kF , and the possible
momenta are 0 ≤ k ≤ kF . It is this continuous quantum number k that
makes our life difficult. Here, indeed, our easy path comes to an end,
because a self-consistent calculation of the wavefunctions certainly cannot
be done in a closed form. Here we must resort to approximations. The
number of occupied levels N is a good guide on the kind of approximation
one needs to make. One can rephrase it as the ratio Q/q, where Q is the
total fermion charge

∫
d4x
√
−gqΨ†Ψ. The thermodynamic limit, where the

number of particles goes to infinity and the charge of an individual fermion
to zero so that N → ∞, q → 0, Q = Nq = const., is at one extreme. We
expect that the problem approaches the classical regime in this case, and it
will turn out to be true. The opposite limit is Q/q = 1, with just a single
excitation, the hairy black hole at birth. We expect this to be likewise a
simple limit, however it will turn out not to be quite true. In-between we
dial between the quantum mechanics of N = 1 and the classical field theory
of N →∞ [14].

Phase diagram. Before doing that, we can sum up our qualitative knowl-
edge on a phase diagram (Fig. 2). From (12-14), bound states form for small
enough m values (panel (A)); if (13) is valid beyond the probe approxima-
tion, the borderline is m = q

√
2. Left of this line there is a hairy solution,

to the right of it the AdS2 near-horizon region (and the whole RN black
hole) remain. The hairy solutions are best described in different ways de-
pending on the number of filled levels (N = Q/q); this is the topic od the
rest of this section. One can also plot the situation at finite temperature
(panel (B)). The phases remain the same; more precisely, the extremal black
hole becomes a finite-temperature black hole, and the hairy solutions also
smoothly develop a hairy horizon (thermal horizon with nonzero fermion
density n(zh)). What changes is the order of the phase transition: at T = 0
it is continuous, and at finite temperature it is discontinuous.
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Figure 2: (A) Phase diagram as a function of the total-to-fermion-charge
ratio Q/q (y-axis), and the fermion mass (in units of AdS radius L) over
charge ratio mL/q (x-axis). For large masses, the effective potential is pos-
itive and the ground state is the bald RN black hole, with quantum critical
dual field theory. For smaller masses, hair develops, which corresponds to
a Fermi liquid in dual field theory. For Q ∼ q (few wavefunctions), the
single-wavefunction Dirac hair approximation works; for Q/q →∞ we ap-
proach the semiclassical fluid (electron star) limit; between them there is
a smooth crossover with unclear properties, both in AdS and in the holo-
graphic dual. Notice different notational conventions for the total charge
from the main text (e vs. Q). Taken over from [15]. (B) Adding nonzero
temperature as the third axis, we obtain also the thermal phase transitions
between the black hole and the hairy solution, which are generically first
order, smoothing out to an infinite order (BKT) transition at T = 0 – the
red line in (B) is the bold black line between the RN and hairy (blue) region
in (A).

3.1. Quantum hairy black holes

A controlled approximation is to solve the problem perturbatively, at one-
loop order in fermionic fields. This is nothing but the textbook Hartree-
Fock (HF) method, but in curved space. Dynamical spacetime makes a big
difference: it introduces an additional strongly nonlinear component of the
system, making the solution landscape larger and less predictable, and the
UV and IR divergences can appear also in the Einstein equations and need
explicit regulators. In fact, this is still an open problem – nobody has yet
classified the solutions of the Einstein-Maxwell-Dirac system even in the
Hartree-Fock approximation, and we do not know what surprises might
lurk in this corner of the phase diagram. The HF electrodynamics contains
two diagrams, a vacuum bubble that renormalizes the chemical potential
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as µ̂(z) 7→ µ̂(z) + δµ̂(z) (the Hartree term):

δµ̂(z) ≡ q
N∑
`=1

∫
kdk

2π

(
ψ†1(E`, k; z)ψ1(E`, k; z) + ψ†2(E`, k; z)ψ2(E`, k; z)

)
(23)

and the exchange interaction (the Fock term). The explicit z-dependence
of the Hartree correction is a gory reminder that the problem is solved
in inhomogenous background. This is also the reason why already the
Hartree correction is nontrivial: unlike the textbook situation where the
shift δµ merely changes the numbers, here it is a radial function δµ(z) and
its influence is also qualitative. So far, nobody even tried to do the whole
HF calculation, and even just the Hartree term is not easy. We are plagued
(1) by the UV divergences introduced by the modes close to k = kF which,
as we have seen, peak most sharply near the boundary and can shatter the
AdS space into pieces if not properly renormalized (2) by the IR divergences
introduced by the modes with k close to zero, which extend far into large
z values and can make the system unstable to forming a naked singularity.

Hard-wall Fermi liquid. The only case which is under good control is
the hard-wall model of [12]: the UV divergences are resolved simply by not
backreacting on the metric, i.e. solving just the Maxwell-Dirac system in
fixed AdS metric (6) even without a black hole, and the IR divergences
disappear by cutting off the space at some arbitrary z0, so that we simply
elliminate the IR region. The approximations are rather drastic, but they
allow a complete solution. In pure AdS space, the solutions ψ1,2 can be
found analytically in terms of Bessel functions, the states form discrete
and gapped bands, and we only have to solve the Maxwell equation (18).
The outcome is given in Fig. 3. Hard wall acts as an infinite potential
barrier, so the wavefunctions should die on it, and the condition ψ1,2(z0) = 0
determines the dispersion relation. The wall should not be charged, so in
(19) the second term on the right-hand side equals zero, meaning that
A′t(z0) = 0. The picture is that of a Fermi liquid, nicely filling the Fermi
sea at momenta k ≤ kF and having long-living quasiparticles. This model
is an important starting point for more complicated setups, and has the
advantage of being intuitive, but by itself is too simplistic. Indeed, we
want to talk about hairy black holes, and here we don’t even have one, as
it is hidden behind the hard wall!

An attempt to study a simple setup but with a black hole was made
in [16]. In this approach, we are limited to a single energy level, ` = 1.
This is justified only when the hair is just starting to form, right at the
transition point. There is again no backreaction on metric, but the (fixed)
metric is now taken to be the RN black hole. This is actually a big jump
in difficulty: the wavefunctions oscillate near the horizon at any nonzero
energy (Fig. 4(A)), so they can satisfy the IR boundary condition at any
energy and momentum (we can always pick the phase so that ψ′(zh) = 0),
and the spectrum is continuous as there is no wall to create a gap. This
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is what forces us to consider the single-mode case: with the gapped hard-
wall model we could add a finite number of modes, but now there is a
continuum of them, N going to infinity even for arbitrarily small Q/q. The
only way out is to assume there one mode only and solve the resulting Dirac-
Maxwell system. This setup is convenient for understanding the transition
itself, which turns out to be discontinuous (first-order) at finite temperature
(Fig. 4(B), and likely infinite-order (Berezinskii-Kosterlitz-Thouless, BKT)
at zero temperature, as we shall soon see.

(A) (B)
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Figure 3: (A) Dispersion relation E`(k) for the first two electron bands
` = 1, 2 in hard-wall AdS space, for µ = 1,m = 1, q = 2. The first band
from bottom is the hole band, not an an electron band – its contribution can
be absorbed in the redefinition of the parameters and it does not contribute
to hair. The colormap shows the resolvent of the Dirac operator, (DzΓ

z +
~D · ~Γ−m−E)−1, thus the bright white regions show the places where the
resolvent diverges and a discrete bound state is formed. The horizontal axis
is the momentum and the vertical axis the energy, both in computational
units. (B) Wavefunctions ψ1,2 (here for ` = 1 and k = 1) are smooth
everywhere - what happen exactly at the horizon we do not know in this
model, as the space is cut off at z = 3.

Quantum electron star. The single-mode approach has taught us a les-
son: already at the level of the gauge field only, the changes from the finite
fermion density are drastic, and the resulting stress tensor is large at the
horizon, so a change of the black hole metric is certainly expected. How-
ever, when we try to solve the Einstein equatioons, things become almost
intractable. Both UV and IR divergences appear: the former because the
currents diverge in continuous space, and the latter because the discrete
bands fuse into a continuum in IR. The latter issue is most easily regu-
larized by a hard wall, but a hard wall does not make much sense if we
want to backreact on geometry. The regularization of the UV divergences
is systematically discussed in [17, 18] and the bottom line is that there is
a logarithmic short-distance divergence which can be regularized by point
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Figure 4: (A) Wavefunctions ψ1,2in RN background, for ` = 1 and k = 1,
always oscillate and approach an essential singularity at the horizon, which
indicates an instability: the metric changes and the degenerate horizon
disappears. (B) The bulk action (or free energy F , from AdS/CFT cor-
respondence) of the Maxwell (electric field), in blue, consists of the bulk
and boundary contribution (dark green and red), the former practically
identical to the contribution from fermions. All these are computed from
the action (2-4). While the total free energy is continuous, it has a cusp,
made manifest by the slight jump in density (black), a sign of first-order
hair-forming transition.

splitting; in this procedure the cosmological constant becomes renormal-
ized. This is not a drastic change: it will just change the numbers but
not qualitative behavior. The IR problem is still unsolved. The approach
of [18] is to put the system in global AdS space4 whose radial slices are
spheres, not planes, so the AdS radius provides a regulator. A perhaps
more physical approach, motivated by consistent truncations from string
theory, is to introduce a non-minimally coupled scalar, i.e., a dilaton that
introduces a soft wall and suppresses the IR degrees of freedom in a con-
tinuous way, without an abrupt cutoff at some z0, so the total bulk action
is now

Sbulk =

∫
d4x
√
−g

[
R− V (Φ)− 1

2
(∂Φ)2 − Z (Φ)

4
F̂ 2
]
−

−
∫
d4x
√
−gΨ̄

(
1

2
DaΓ

aeΦ +
1

2
eΦDaΓ

a +m

)
Ψ, (24)

where the dilaton potential reproduces the AdS cosmological constant near
the boundary, i.e., Φ(z → 0) = 0 and V (Φ → 0) = 6, Z(Φ → 0) = 1. It
is not clear if one can ever remove the IR regulator. That is precisely the

4Dual field theory then lives on a sphere instad of a plane.
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reason that we regard the dilaton regulator as more physical, since string
theory constructions as a rule contain non-minimally coupled scalars, and
the action (24) can be obtained by consistent truncation; whereas global
AdS is essentially an ad hoc solution, though a very interesting one, with
possible applications in AdS/condensed matter duality, where systems that
live on surfaces (such as a sphere) appear naturally.

While this is still very much a work in progress,5 preliminary results
suggest that the RN-to-hairy-black-hole transition at zero temperature is
an infinite-order (BKT) transition, where all derivatives of S remain smooth
(Fig. 5). This is the point where the potential just starts deviating very
slightly from the flat IR behavior in Fig. 1(A). At the end of this section we
will try to understand this (still conjectural) numerical finding analytically.

3.53.02.5

3.52

3.53

3.54

D

F

Figure 5: The bulk action (here denoted as free energy F , from AdS/CFT
correspondence) as a function of the fermion mass (here denoted as ∆ =
3/2 + m) is very well fit by the BKT function exp(−c/

√
∆c −∆). The

parameter c is determined by the chemical potential (we plot for three val-
ues mu = 1.0, 1.5, 2.0 in violet, blue, green). To the right of the transition
point the action is independent of m as there is no hair, fermion density is
zero, and so nothing depends on the fermion parameters. To the left of the
transition point, the fermions form hair of nonzero density. Nobody knows
yet how the near-horizon metric changes.

3.2. WKB star and electron star

WKB approach. We have followed the logical chain of reasoning from the
point where the hair starts growing, having Q/q ∼ 1 and deforming the
black hole just a slight bit, towards larger and larger hair, eventually reach-
ing the regime Q/q � 1. But this last regime is the easiest to approach,
as the fermions become as close to classical as they can possibly be. A
good starting point is the controlled expansion in h̄, where we solve the

5With N. Chagnet, V. Djukić and K. Schalm.
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Dirac equation in the eikonal approximation or, in other words, the WKB
approach [15]. We express the wavefunction as

ψ1,2 = eıθ±/
√
p, p ≡

√
Ê2 − m̂2 − k̂2, (25)

where p has the role of the canonical momentum. The wavefunction is
nonzero between the turning points z±, determined by the equation p(z±) =
0. The explicit from of the phase θ± as well as higher-order corrections to
the phase can be found in [15], but the reader should in fact have no diffi-
culty in deriving them, following the usual WKB procedure (though for the
Dirac equation instead of the Schrödinger equation). Now the density and
pressure are found by inserting the solution (25) into (22). The procedure
can be iterated to obtain self-consistent solutions, but now we solve the
whole system including the Einstein equations. It is instructive to plot the
total on-shell action (2) as a function of temperature (remember that finite
temperature is imposed through the corresponding boundary condition for
the metric function F ).6 Fig. 6 plots the dependence F(T ) in the vicinity
of the transition value Tc: the derivative ∂F/∂T undergoes a jump which is
nothing but the entropy S ≡ ∂F/∂T . We thus find a first-order phase tran-
sition at the point when Fermi hair starts forming. Of course, don’t forget
that the WKB approach is in fact not to be trusted very near the transition
point: at the transition N changes from 0 to 1, which is far from the regime
N � 1. But the qualitative insight that at finite temperature the system
undergoes a non-symmetry-breaking transition is likely robust and we ex-
pect to prove it also within the more rigorous fully quantum-mechanical
approach of the previous subsection. It is a hairy version of the celebrated
Hawking-Page transition [19], and confirms the intuition that the high-
tmeperature phase is always a black hole; but now, the low-temperature
phase is not simply a gas, but a dense fluid in AdS.

Ploting the density and pressure in Fig. 7(A), one finds that for high
values of N they tend to a constant value in deep interior. This motivates
the fluid ansatz taken in the electron star limit, now to be considered.

Electron star. Electron star is a charged, AdS version of the neutron
stars, described as perfect fluid by the Oppenheimer-Volkov equations. The
idea is to assume that the fermionic matter is a perfect fluid, and then ex-
press the energy density ρ, pressure p and charge density n in terms of
integrals over energy and momenta (i.e., assume that the bound states are
infinitely close, and the gaps between them vanish). The fluid approxi-
mation thus becomes exact in the limit of N → ∞, as we expect from a
semiclassical approximation. Anticipating the current and stress tensor of
the form

Tµν = (ρ+ p)uµuν + pgµν , Nµ = nuµ, (26)

6In AdS/CFT, the bulk on-shell action S precisely equals the free energy F of the
CFT side. But even without considering the details of the CFT, we can still make use
of this interpretation to detect a phase transition in the system.
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Figure 6: (A) The on-shell action or free energy as a function of tempera-
ture, in the presence of fermions. For low temperatures, the fermion density
is finite and the derivative ∂F/∂T jumps at T = Tc, a sign of first-order
transition with the development of the hair. This is in line with the Dirac
hair result in the previous figure, and indeed for the lowest number of levels
NWKB the transition is the sharpest. In (B) we zoom in into the transition
region.

we can write the density starting from (22) and making use the optical
theorem to relate it to the imaginary part of the Feynmann propagator
GF . This spells out as

ρ =

∫ Ê2−k2

0

dE

2π

∫ kF

0

d3k

(2π)3
Ê=TrıΓ0GF (E, k)

=

∫ Ê2−k2

0
dE

∫
k2dk

4π3

1

2

(
1− tanh

(
β

2
Ê

))
Tr(ıΓ0)2δ

(
Ê −

√
k2 +m2

)
=

1

π2

∫ µ̂

m
dEE2

√
E2 −m2. (27)

We similarly find the number density n, whereas the pressure need not be
computed explicitly: since we work with an isotropic free Fermi fluid, its
equation of state has to be p = ρ − qnµ̂. It is here that the approximate
nature of the electron star with respect to the WKB star becomes obvious
(Fig. 7): in WKB star there is an extra term in the pressure, coming from
the nodes of the WKB wavefunction. One can check that the integral in
(27) indeed approaches a constant as we go into deep interior. On the other
hand, at some z∗ when µ̂(z∗) = m the density falls to zero: the star is a
classical object and has a sharp border. So for 0 < z < z∗ we continue the
metric to the RN metric (the metric outside a charged isotropic object).

Since we can express n, ρ, p explicitly, we get a nice system of local
ordinary differential equations in F,G,At, with all quantum expectation
values pulled under the rug. This completes the circle, and brings another
universal message: due to Pauli principle, fermionic operators are never
local, except in two extreme cases: when only one state is occupied (so the
format of the Slater determinant is 1×1, i.e., it contains a single state), or
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when infinitely many states are occupied, so the Slater determinant turns
into a classical, continuous probability density. In Fig. 7 we can see how
the WKB solution captures the quantum ”tails” near the turning points,
which the electron star does not have. It is also instructive to compare this
solution to the Oppenheimer-Volkov equations in flat space: in the latter
case, m̂ ∼ 1/

√
F is always larger than µ̂ ∼ 1/F

√
G, unlike in AdS where

m̂ ∼ 1/z
√
F and for z > z∗ it becomes smaller than the local chemical

potential, so the integral in (27) has a nonzero range. This is because
AdS acts like a potential box that can hold the charged fermions together
against electrostatic repulsion. In flat space that does not happen, and we
have only neutron stars, not electron stars.
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Figure 7: (A) Density of the finite temperature WKB star at various fillings
NWKB; besides the classically allowed region, there are also exponentially
decaying tails in the classically forbidden region, where Veff > 0. (B) In
the electron star (fluid limit), there are no such tails and the star has a
sharp border. Taken over from [15]. (B) Comparison of the WKB solution
(full lines) and the electron star solution (dashed lines) at the same chemical
potential, fermion charge and mass. We plot the metric functions f, h (F,G
in the main text) in red and violet, the gauge field Φ (At in the main text)
in green, and density and pressure n, p in blue and dark green. The metric
solutions do not differ much, despite the long quantum WKB tails, absent
in the electron star.

3.3. Lifshitz metric, BKT transition and the missing pieces

In the framework of the electron star model, the Einstein-Maxwell equations
can be solved analytically, thanks to the fact that, in deep IR, n, ρ, p =
const. and we can employ a scaling ansatz for the metric. The idea is to
match the IR expansion around the scaling solution to the UV expansion
around pure AdS. With ansatz of the form gtt ∝ −1/zα, gii ∝ 1/zβ and
gzz = 1/z2 (one metric component we can fix at will as it amounts to
picking the gauge for the metric), equations of motion give the IR solution

ds2 = − 1

z2ζ
dt2 +

1

z2
d~x2 +

1

zζ
dz2
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At =
1

zζ
, L =

2

z2ζ
+ 6− ∂zA2

t − nA2
t − p⊥, (28)

where in the expression for the total Lagrangian density in the second
line, we have inserted in the action (2) the solutions for the metric and
the gauge field, as well as the constant (z-independent) solution obtained
for ρ in (27) and similarly for n, p. Three important conclusions can be
drawn: (1) the IR metric is scale-invariant, with anisotropic scaling of time
and space, so that the scaling transformation has the form t 7→ λt, ~x 7→
~xλ1/ζ (2) the on-shell Lagrangian density effectively describes a massive
vector field, with mass squared equal to fermion density n (3) the fermionic
contribution to the action equals the pressure. The second point agrees
with the known result that Lifshitz black holes are generated by Proca
fields [21], and what happens is the Abelian-Higgs mechanism: fermion
density acquires a finite expectation value which in turn breaks the U(1)
symmetry, giving the photon a mass. The third point is expected within
a fluid model, since the action of an ideal Lorentz-invariant (semi)classical
fluid equals its pressure [7]. In the fluid limit we can also understand the
first-order transition at finite temperature, because it is just a van der
Waals-type liquid-gas transition.

We have seen that the thermal transition from RN to a Lifshitz black
hole is of first order, and that the T = 0 transition is apparently a BKT
(infinite order) transition. The latter is not quite clear yet because, as
we have emphasized, nobody has yet managed to peek into the deep IR,
it remains hidden behind the hard wall. But if we tentatively accept the
numerical evidence for the infinite-order transition, can we understand it
theoretically? The key lies in understanding how the AdS2 throat dis-
appears. The conformality-breaking mechanism of [22, 23] gives an idea,
though the details are still missing. The crucial moment is that the near-
horizon geometry is AdS2. Right at the horizon (s → −∞) the potential
is approximately constant. In the UV of the AdS2 throat, which is around
some finite value s0, the potential behaves as −c/(s − s0)2. This inverse-
square potential is known to describe conformal quantum mechanics when
c > −1/4. For c = −1/4 the conformal invariance breaks. discrete states
appear and the effective potential is not consistent unless regularized as

Veff =
c

(s− s0)2
− vδ(s− s0), (29)

and the solution of the effective Schrödinger equation is

ψ(r) = c+(s− s0)α+ + c−(s− s0)α− , α± =
1

2
±
√
c+

1

4
, (30)

and the ratio c+/c− is given in terms of Bessel functions J1/2 and J−1/2:

c+

c−
= −εα−−α+

γ + α−
γ + α+

, γ =
√
v
J1/2(

√
v)

J−1/2(
√
v)

(31)
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The solution (30) diverges at s = s0 unless we introduce a cutoff at some
distance ε from s0. Imposing the renormalization condition that c+/c−
remains independent of ε, we get the β-function of the renormalization
group as (` being the RG scale):

β ≡ dγ

d`
= (c+ 1/4)− (γ + 1/2)2. (32)

And we’re done: the fixed points of the above flow equation are easily found
to be −α∓. For γ = −α∓ we get the solution for ψ from (30) with c± = 0
respectively. The free energy scaling is obtained as Son−shell = F ∝

∫
d`/β,

which gives just the form found in Fig. 5. However, the presence of both a
hard-wall cutoff in z and the soft-wall dilaton, completely unaccounted for
in the above analysis, clearly suggest more work is needed for everything
to click together.

4. Wormholes with fermion hair

The lengthy review we have given so far is meant to be self-contained and
helpful for those interested in understanding and contributing to the prob-
lem of black hole instabilities with fermionic matter. As we have seen, it
contains some puzzling questions and is of more than technical interest (af-
ter all, the whole field has been active mostly for the last fifteen years or so).
But we also want to point out that with the methodological powerhouse of
the HF, WKB and fluid methods, one can tackle new problems. A recent
issue where fermions at finite density seem very relevant is the search for
traversable wormholes.

The motivation for this story lies mainly in the celebrated black hole
information paradox: as far as we know, the Hawking radiation is ther-
malized, meaning that the information content of the matter falling into
the black hole is lost. A possible way out or, at least, a way to better un-
derstand the issue, is to consider the maximally extended Carter-Penrose
diagram of a black hole, which contains two horizons and two spacetimes. If
transport between the two were possible, one could imagine that the infor-
mation is not lost because the matter falling into one horizon is entangled
with the matter on the opposite side. This is the idea of the ER=EPR
conjecture [24]. In order to build a traversable wormhole, one needs neg-
ative that the stress-energy tensor averaged over a geodesic be negative,
thus violating the so-called averaged negative energy condition (ANEC)
[25, 26]. This will never happen with conventional classical matter. One
needs either exotic fields or quantum corrections. Recently however, a few
traversable wormholes have been realized with only standard-model matter.
The most ”conservative” is the setup of [27] which creates negative energy
by considering a particle-hole symmetric spectrum of massless fermions in
a mangetic monopole field: because of the negative Landau levels, the net
energy is negative. The starting point is thus a pair of magnetically charged
RN black holes with magnetic charges H and −H, with the hope that the
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negative energy Landau levels will push the averaged stress tensor to large
enough absolute values to open up a wormhole. In this way, [27] constructs
a quasi-stationary (long-living) wormhole in assymptotically flat space. In
AdS, negative energy density can easily be constructed by coupling the two
boundaries nonlocally: in this way temporary wormholes, opening up for
the finite duration of the pertrubation, can be constructed [28], and even
eternal wormholes are possible but at the cost of much more exotic bound-
ary CFTs and their couplings [29, 30, 31]. Here we are interested in making
a wormhole in a more ”down-to-earth” manner, by growing negative-energy
fermion levels as in [27]. The task is to make such wormholes more stable,
and to see if they survive at higher fermion density rather than just a single
wavefunction as in [27]. Here the previously develped methods can help us.

Magnetic electron star. The crucial consequence of the magnetic field is
the Landau quantization. The motion along the x-coordinate is quantized
into discrete levels, whereas the motion along y is not quantized and intro-
duces degeneracy. The quantization along x-axis makes our life somewhat
easier – even without any IR cutoff the ground state wavefunction now
has a discrete quantum number, the Landau level mj . The magnetic field
breaks the spherical symmetry of the wavefunctions down to cylindrical, so
it is convenient to introduce the polar angles θ, φ:

ds2 = −A(z)dt2 +B(z)dz2 + C(z)
(
dθ2 + sin2 θdφ2

)
(33)

and to pick a different gamma matrix basis: Γ0 = ıσ1 ⊗ 1̂, Γ1 = σ2 ⊗ 1̂,
Γ2 = σ3 ⊗ σ1, Γ3 = σ3 ⊗ σ2. Separating the variables and representing the
wavefunction as

Ψ =
j∑

mj=−j
(ψ+ (mj ; z) , ψ− (mj ; z))⊗ (η1 (mj ; θ) , η3 (mj ; θ)) e

ımjφ, (34)

where j is the total number of Landau levels j = (H − 1)/2, we get the
fully spin-polarized solution (η2 = 0) for zero fermion mass:

ψ±(mj ; z) = exp

(
±ıE(mj)

∫ z

0
dz′

√
B(z′)

A(z′)

)
, (35)

η1(mj ; θ) =
eıH sin θ/2

√
sin θ

(
tan

θ

2

)mj

.

For nonzero mass, we can perform a Foldy-Wouthuysen transform starting
from the above solution. Unlike the massless case considered in [27], the
resulting stress-energy tensor will not be traceless, but that is precisely
what will guve us extra stability. The reason this is consistent is the Landau
quantization: the levels for different mj are gapped from each other and
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each Landau level can be treated as a single-particle solution which does
not mix with other Landau levels. This results in the stress tensor

〈Tzz〉 =
En

(1 + z2)2
(sin 2α− cos 2α) , tanα = −m/E(mj). (36)

Fig. 8(A) shows the radial pressure Trr as a function of energy, the outcome
being that positive stress energy tensor is produced for 0 > E > −m. In
order to avoid this positive contribution, the Landau level spacing has to
be large enough, i.e., larger than the mass gap (at zero mass this condition
is trivially satisfied, as it simply means that any finite E(mj = 1) will do;
this is the case studied in [27]). The simplest gapping mechanism we can
think of is the chemical potential, i.e. an electrostatic field in addition to
the magnetostatic one. The black hole thus has to become dyonic, with
magnetic charge H and electric charge e. Assuming we have ensured the
negativity of (36), we can write it in the form Tzz = −τ/(1 + z2)2, with
τ a positive constant. Its magnitude roughly determines the size of the
wormhole opening.
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Figure 8: (A) Radial component of the stress-energy tensor 〈Trr〉 as a
function of the (discrete) fermion energy E. Positive contribution only
comes when > E(mj) > −m. In order to avoid this range of energies we
need a nonzero chemical potential (i.e., electric field, resulting in a dyonic
black hole) to stabilize the wormhole with massive fermionic hair. (B)
The solution for the metric component gtt in the intermediate region, as
a function of the radial coordinate r, for τ = 0, 0.05, 0.10 (black, blue,
red). Wormhole solutions (blue, red) are quantitatively very close to the
unperturbed black hole (black) but qualitativrly different as there is no
zero anymore.

Wormhole solution and matching. Having computed the stress-energy
tensor (36), we can solve the Einstein equations. The strategy is again
matching the expansions, but now we have three regions: the far region
which is asymptotically AdS or even flat (we have mentioned that in the
presence of magnetic field discrete bound states can form even in absence of
AdS boundary), the intemediate region is a slightly perturbed near-horizon
AdS2 region of our magnetic RN geometry, and the inner region, the worm-
hole throat that opens up, turns out to be a global AdS2 at leading order,
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so it has a spherical boundary continuing onto the intermediate regions.
The inner, near-global-AdS2 metric in the form (33) at leading order reads

A(z) = R2
0

[
1 + z2 − 8πτ

(
z2 +

(
3z + z3

)
arctan z − log

(
1 + z2

))]
B(z) = R4

0/A(z), C(z) = R2
0 [1 + 8πτ (1 + z arctan z)] . (37)

This solution is to be matched to the intermediate-region solution. Now
large z corresponds to the wormhole mouth, i.e., the matching is to be
done at large z, where small z is the ”center” of the wormhole throat. The
solution to match onto is the RN black hole metric:

ds2 = −l2f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
l =

R0

2π2τ
, R =

r −
√
π
√
e2 +H2

2π2τ
. (38)

The solution thus exists for any choice of e and H. But for large e (in
other words, for a large chemical potential), the density of the hair will
increase significantly and we should repeat the WKB star or electron star
approach. in AdS this is a simple matter, proving the stability of the
configuration even at high densities. The interesting question is, can it
work also in assymptotically flat space? In absence of magnetic field, the
answer is certainly no – without an AdS boundary, there is nothing to
equilibrate the electrostatic repulsion of electrons. But in the presence of
magnetic field, one might obtain a stable charged hairy wormhole if the
change in the near-horizon geometry is sufficient to effectively decrease the
electrostatic energy density. This is the logical immediate task for future
work.

We finish this short review of our work in progress on hairy wormholes
with a somewhat more ambitious task. The dyonic wormhole model consid-
ered here is obviously quite simplistic and artificial. A much more realistic
model is to start from a pair of Kerr black holes and see if these can open
up a wormhole in a manner analogous to the scenario we have considered.
In this case the magnetic field would be generated self-consistently by the
(rotating) fermionic hair, removing the need for the magnetic monopole
charge. Such an object would come much closer to realistic astrophysical
matter.

5. Instead of a conclusion

We have given a crack and practical review of the insights and technolo-
gies needed to describe and understand hairy black holes in anti-de Sitter
space. The phase diagram in the presence of nonzero fermion density is
quite rich, and it involves two deep and universal phenomena. First, the
finite-temperature hairy black holes develop through a discontinuous phase
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transition akin to the Hawking-Page transition (indeed, it is precisely the
Hawking-Page transition but at finite density). The standard lore that at
high enough temperatures black holes will always form is confirmed. Notice
this is true at any fermion mass and charge, and thus at any occupation
number, from a single wavefunction to the fluid limit, so the finding is
definitely robust. Second, at zero temperature the transition is driven by
the fermionic charge and/or chemical potential, i.e., electric charge of the
black hole. In this case the black hole vanishes infinitely slowly, in a BKT
transition that can be understood as the breaking of the one-dimensional
conformal symmetry of the wavefunctions in the effectve inverse-square po-
tential well. This is solely the consequence of the near-horizon physics,
independent of the AdS boundary. Similar conformality-breaking infinite-
order transitions are known in various backgrounds in string theory. Maybe
one could relate the case described here to some consistent top-down model.

As mentioned in the Introduction, we have deliberately left out exten-
sions and applications of the formalism described, for reasons of space and
also generality of discussion. The field of applications closest to our expe-
rience is the AdS/CFT correspondence. Electrically charged black holes
are dual to field theories at finite U(1) density. The transition from a bald
black hole to a hairy black hole is thus a transition between two phases at
equal chemical potential. How do they differ then? We know that a black
hole is dual to the Coulomb (deconfined) phase of some non-Abelian finite-
temperature gauge theory [1, 4]; in the simplest setup coming from type
IIB string theory, it is the N = 4 supersymmetric SU(N) theory. Coulomb
phase means that the U(1) charge is carried by SU(N)-gauge-charged op-
erators, in our case fermions (”mesinos”) and thus not visible to low-energy
probes, since at low energies all operators are likely SU(N)-gauge-neutral.
The hairy phase describes a dual field theory where the charge is carried
by gauge-neutral operators (”baryons”) and thus visible to probes such as
a photon. This viewpoint was tried and confirmed in [11, 12, 15, 23]. It
has realizations in condensed matter systems such as strange metals and
heavy fermion materials. In this case, the gauge fields are emergent and
arise from the spin-charge separation, and the transition between a black
hole and a hairy geometry is a transition between a non-Fermi liquid, where
most of the charge is carried by complicated excitatons that are nor directly
seen in the spectrum, and a Fermi liquid where the fundamental degrees
of freedom are just renormalized electrons. In QCD, this picture describes
the phase diagram at intermediate energy scales and finite densities, where
a black hole describes quark-gluon plasma, and a hairy solution describes
either the color condensate or conventional barionic matter depending on
the details of the model. One can learn a lot on AdS/condensed matter
and AdS/QCD from [5, 6].

Finally, the search for wormhole solutions and how fermionic hair might
stabilize them is likely to become very important in the future, in connec-
tion to the quantum information theory and the firewall, ER=EPR and
other approaches to the black hole information problem. One can use much



84 M. Čubrović

of the formalism developed for hairy black holes, but the interpretation is
still challanging. It is also unclear how realistic the wormhole proposal is
if we work with only conventional, standard model matter, i.e. is it just an
important proof of concept or a realistic model?
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