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Abstract

In this short contribution we introduce a nonassocaitive deformation of dif-
ferential geometry and General Relativity. The nonassociativity is based on the
string theory nongeometric R-flux. We use the twist formalism to consistently
deform the algebra of infinitesimal diffeomorphisms into the quasi Hopf algebra of
(deformed) infnitesimal diffeomorphisms and introduce the NA deformation of dif-
ferential geometry. In particualr, we define the Levi-Civita connection, curvature
tensor and torsion. The space-time quantities (curvature, torsion) are obtained
by the zero momenum leaf projection to the space-time. The vacuum Einstein
equation in space-time, expanded up to first order in the deformation parameter
κ~ is obtained.

1. Introduction

In the context of string theory, it is expected that the closed string sector
provides a framework for a quantum theory of gravity. Namely, the massless
bosonic modes of the closed string sector contain gravitational degrees of
freedom such as the metric, the B-field, and the dilaton. In particular, in
locally non-geometric backgrounds one expects to find a low-energy limit
of closed string theory which is described by an effective nonassociative
theory of gravity on spacetime.

Attempts to formulate a consistent effective gravity theory in the space-
time, starting from the nonasocaitive phase space of closed strings were
done in [1, 2, 3]. There the construction is done using the twist approach.
The twist approach provides a well defined way to introduce the noncommu-
tative/nonassocaitive differential geometry and the notions of connections
and curvature. The essential step [2, 3] is the projection from the phase
space to the spacetime via the zero momentum leaf. In this short con-
tribution we explain how the metric aspects of nonassociative differential
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geometry and vacuum Einstein equations in a model based on a locally
non-geometric flux R are developed. The contribution is based on work
done in [2, 3].

After a short overview of nonassociativity and noncommutativity in
physics, in next section we develop the nonassocaitive differential geometry
based on a cochain twist. This we use in Section 3 to construct a nonasso-
ciative theory of gravity on spacetime. Explicit expressions for the torsion,
curvature, Ricci tensor and Levi-Civita connection in nonassociative Rie-
mannian geometry on phase space are obtained. Using the projection to
the zero momentum leaf, we construct the R-flux corrections to the Ricci
tensor on spacetime, and comment on the potential implications of these
corrections.

2. Nonassociative differential geometry

First ideas of a space-time with noncommuting (NC) coordinates appeared
in the early days of quantum mechanics. In the 1930 Heisenberg proposed
to introduce noncommuting coordinte operators in order to regularize the
divergent electron self-energy. In the 1947 Snyder construced the first model
of a NC space-time [4]. The renormalization theory, developed in the 1950es
sucesfully solved the problem of divergences in quantum filed theory, so
the idea of noncommutativity was not developed furhter. However, in the
1990es new results from string theory and searches for quantum gravity and
quantum space-time renewed interest in noncommutative geometry. Lot of
work has been done in formulating quantum field theory and gravity in a
NC space-time, see reviews [5].

In the similar way, first ideas on nonassociativity of coordinates in
physics go back to the early days of quantum mechanics. Jordan formu-
lated a version of quantum mechanics [6] whith a new composition between
herimitean observables

A ◦B =
1

2
((A+B)2 −A2 −B2).

This composition gives a hermitean observable again, but it is nonasso-
caitive. Nambu further developed a modification of classical mechanics by
introducing a Nambu-Poisson bracket {f, g, h} instead of the usual Poisson
bracket [7]. Nambu-Poisson bracket fulfils the fundamental identity instead
of the usual Jacobi identity. The idea of nonassociativity in physics was
then forgoten until recenty. Namley, it was discovered that symmetries of
closed string field theory close a strong homotopy Lie-algebra, L∞ algebra.
These algebras can be seen as a generalization of the usual Lie algebra that
do not fulfil the Jacobi identity, but higher homotopy relations instead.
Nonassociative ?-products were develeoped from (closed) string theory in
locally non-geometric backgrounds [8]. We will work with a model of a
nonasocaitive phase space that originates from closed strings moving in a
non-geometric background defined by the constant R-flux.
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The phase spaceM has coordinates xA = (xµ, x̃µ = pµ), ∂A =
(
∂µ, ∂̃

µ =
∂
∂pµ

)
with A = 1, . . . 2d. We introduce a deformation by a cochain twist F

F = exp
(
− i ~

2 (∂µ ⊗ ∂̃µ − ∂̃µ ⊗ ∂µ)− iκ
2 Rµνρ (pν ∂ρ ⊗ ∂µ − ∂µ ⊗ pν ∂ρ)

)
, (1)

with Rµνρ totally antisymmetric and constant, and κ := `3s
6~ . This twist

fails to fulfill the 2-cocycle condition

Φ (F ⊗ 1) (∆⊗ id)F = (1⊗F) (id⊗∆)F . (2)

The associator Φ is given by

Φ = exp
(
~κRµνρ ∂µ ⊗ ∂ν ⊗ ∂ρ

)
=: φ1 ⊗ φ2 ⊗ φ3 = 1⊗ 1⊗ 1 +O(~κ). (3)

In the following text we will use the notation: F = fα⊗ fα, F−1 = f̄α⊗ f̄α,
Φ−1 =: φ̄1 ⊗ φ̄2 ⊗ φ̄3. The R-matrix encodes the braiding and it is defined
by

R = F−2 =: R α ⊗ R α, (4)

The inverse of the R-matrix is then

R−1 = F2 =: R α ⊗ R α.

The phase spaceM is invariant under the action of infinitesimal diffeo-
morphism. The Hopf algebra of infinitesimal diffeomorphisms UVec(M) is
given by:

[u, v] = (uB∂Bv
A − vB∂BuA)∂A,

∆(u) = 1⊗ u+ u⊗ 1,

ε(u) = 0, S(u) = −u.

The twist (1) deforms this Hopf algebra into a quasi-Hopf algebra of in-
finitesimal diffeomorphisms UVecF (M). The deformation is such that the
algebra structure does not change, the coproduct is deformed

∆Fξ = F ∆F−1,

while the counit and the antipod do not change: εF = ε, SF = S.
On the basis vector fields the twist acts as

∆F (∂µ) = 1⊗ ∂µ + ∂µ ⊗ 1 ,

∆F (∂̃µ) = 1⊗ ∂̃µ + ∂̃µ ⊗ 1 + iκRµνρ ∂ν ⊗ ∂ρ .

We use the covariance under the infinitesimal diffeomorphisms as a guid-
ing principle to define a NA phase space. Namley, we know that the differ-
ential geometry onM is covatiant under UVec(M). Then we demand that
the NA differential geometry onM should be covariant under the action of
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twist-deformed insintesimal diffeomorphism UVecF (M). This means that
for any UVec(M)-module algebra A (functions, forms, tensors) and for
a, b ∈ A, u ∈ Vec(M)

u(ab) = u(a)b+ au(b),

where the action on product is defined by the Leibniz rule, that is the
coproducts of vectors u. The twist (1) deforms this into: UVec(M) →
UVecF (M) and A → A? with

ab→ a ? b = f α(a) · f α(b).

Then A? is a UVecF (M)-module algebra

ξ(a ? b) = ξ(1)(a) ? ξ(2)(b),

for ξ ∈ UVecF (M) and the action is via the twisted coproduct ∆Fξ =
ξ(1) ⊗ ξ(2).

The new composition is noncommutative

a ? b = f α(a) · f α(b) = R α(b) ? R α(a) =: αb ? αa

and it is also nonassociative:

(a ? b) ? c = φ1a ? (φ2b ? φ3c).

The noncommutativity is controled by the inverse of the R-matrix, while
the nonassociativity is controled by the associator Φ.

In particular, the algebra of functions C∞(M) is deformed to C∞(M)?

f ? g = f α(f) · f α(g) (5)

= f · g + i ~
2

(
∂µf · ∂̃µg − ∂̃µf · ∂µg

)
+ iκRµνρ pν ∂ρf · ∂µg + · · · ,

For the special case of phase space coordinates we get

[xµ ?, xν ] = 2 iκRµνρ pρ,

[pµ ?, pν ] = 0, [xµ ?, xν ] = i ~ δµν ,
[xµ ?, xν ?, xρ] = `3s R

µνρ. (6)

The exterior algebra of differential forms Ω](M) is deformed to Ω](M)?
with

ω ∧? η = f α(ω) ∧ f α(η), (7)

f ? dxA = dxC ?
(
δAC f − iκRAB

C ∂Bf
)
,

with non-vanishing components Rxµ,xν
x̃ρ = Rµνρ. Especcially, for the

basis 1-forms

(dxA ∧? dxB) ∧? dxC = φ1(dxA) ∧?
(
φ2(dxB) ∧? φ3(dxC)

)
= dxA ∧? (dxB ∧? dxC) = dxA ∧ dxB ∧ dxC .
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Exterior derivative d is undeformed. It fulfills d2 = 0 and the undeformed
Leibniz rule

d(ω ∧? η) = dω ∧? η + (−1)|ω| ω ∧? dη. (8)

Duality or the ?-pairing is defined as

〈 ω , u 〉? =
〈

f α(ω) , f α(u)
〉
. (9)

Finally, the Lie-derivative can consistently be deformed to a ?-Lie dri-
vative as

L?u(T ) = L f α(u)( f α(T )), (10)

L?u(ω ∧? η) = L?φ̄1u
(φ̄2ω) ∧? φ̄3η + α(φ̄1 ϕ̄1ω) ∧? L?

α(φ̄2 ϕ̄2u)
(φ̄3 ϕ̄3η),

[L?u,L?v]• = [f αL?u, f αL?v] = L?[u,v]?
,

with [u, v]? =
[

f α(u), f α(v)
]

and[
u, [v, z]?

]
?

=
[
[φ̄1u, φ̄2v]?,

φ̄3z
]
?

+
[
α(φ̄1 ϕ̄1v), [α(φ̄2 ϕ̄2u), φ̄3 ϕ̄3z]?

]
?
.

It is well known that the usual Lie derivative Lu generates a one parameter
family of diffeomorphisms. However, a relation of L?u with diffeomorphism
symmetry in space-time still needs to be understood fully [9, 10].

After formulating the basic notions of the NA differential geometry, we
now define a ?-connection by

∇? : Vec? −→ Vec? ⊗? Ω1
?

u 7−→ ∇?u , (11)

∇?(u ? f) =
(
φ̄1∇?(φ̄2u)

)
? φ̄3f + u⊗? df. (12)

A connection defined in this way satisfies the right Leibniz rule, for u ∈
Vec? and f ∈ A?. In particular

∇?∂A =: ∂B ⊗? ΓBA =: ∂B ⊗? (ΓBAC ? dxC) . (13)

d∇?(∂A ⊗? ωA) = ∂A ⊗? (dωA + ΓAB ∧? ωB),

for ωA ∈ Ω]
?.

Once we defined the ?-connection, the torsion and the curvature tensors
can be defined straightforwardly. The torsion we define as

T? := d∇?
(
∂A ⊗? dxA

)
: Vec? ⊗? Vec? → Vec?,

T?(∂A, ∂B) = ∂C ? (ΓCAB − ΓCBA) =: ∂C ? T
C
AB .

In the coordinate basis, the torsion-free condition reduces to ΓCAB = ΓCBA.
The curvature tensor we define as

R? := d∇? • d∇? : Vec? −→ Vec? ⊗? Ω2
?,

R?(∂A) = ∂C ⊗? (dΓCA + ΓCB ∧? ΓBA) = ∂C ⊗? RCA,
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The Ricci tensor is a contraction of the curvature tensor

Ric?(u, v) := −〈 R?(u, v, ∂A) , dxA 〉? (14)

Ric? = RicAD ? (dxD ⊗? dxA).

Commponents of the Ricci tensor in the coordinate basis can be calculated
from RicBC := Ric?(∂B, ∂C) and they are given by

RicBC = ∂AΓABC − ∂CΓABA + ΓAB′A ? ΓB
′

BC − ΓAB′C ? ΓB
′

BA

+ iκΓAB′E ?
(
REG

A (∂GΓB
′

BC)−REG
C (∂GΓB

′

BA)
)

(15)

+ iκREG
A ∂G∂CΓABE − iκREG

A ∂G
(
ΓAB′E ? ΓB

′

BC − ΓAB′C ? ΓB
′

BE

)
+κ2 RAF

D

(
REG

A ∂F (ΓDB′E ? ∂GΓB
′

BC)−REG
C ∂F (ΓDB′E ? ∂GΓB

′

BA)
)
.

Unfortunately, a scalar curvature cannot be defined along these lines. That
is, it cannot be seen as a map and the inverse metric tensor needed for the
definiton. Due to nonassociativity it is not straightforward to define the
inverse of the metric tensor. Namely

GMN ? GNP = δPM , but (GMN ? GNP ) ? f 6= GMN ? (GNP ? f).

This problem we hope to solve in our future work.

3. Nonassociative deformation of General Relativity

The connection of General Relativity ΓLC ρ
µν is a Levi-Civita connection:

it is torssion-free and metric compatible ∇αgµν = 0. In this section we
generalize this conditions to the NA phase space. First we define a metric
tensor g? ∈ Ω1

? ⊗? Ω1
? and then we demand

?∇g? = 0. (16)

In addition, the connection is torsion free ΓCAB = ΓCBA. Expanding the
above condition up to first order in ~κ we find

Γ
S(0,0)
AD = ΓLCS

AD = 1
2 gSQ (∂DgAQ + ∂AgDQ − ∂QgAD) , (17)

Γ
S(0,1)
AD = − i ~

2
gSP

(
(∂µgPQ) ∂̃µΓLCQ

AD − (∂̃µgPQ) ∂µΓLCQ
AD

)
,

Γ
S(1,0)
AD = iκRαβγ

(
g̃Sγ gβN

(
∂αΓLCN

AD

)
− gSM pβ (∂γgMN ) ∂αΓLCN

AD

)
,

Γ
S(1,1)
AD =

~κ
2
Rαβγ

[
long expression + (∂αg

SQ) (∂βgQP ) ∂γΓLCP
AD

]
.

Here we labeled g̃Sγ = gSM δM,x̃γ . Notice that Γ
S(0,1)
AD and Γ

S(1,0)
AD are

purely imaginary, while Γ
S(1,1)
AD is real. For gMN that does not depend on

the momenta pµ, only the last term in Γ
S(1,1)
AD remains.
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The phase space vacuum Einstein equations are given by

RicBC = 0 . (18)

Using (14) and (17) we obtain vacuum Einstein equations in phase space
expanded up to first order in ~κ. However, we are interested in the de-
formation of General Relativity in space-time. To extract the space-time
vacuum Einstein equations from (18) we develop a method of projection
which we describe in the following.

We start from objects in the space-time M , for example the space-time
metric tensor g = gµνdxµ ⊗ dxν . Then we lift these objects to the phase
space M foliated with leaves of constant momenta. Note that each leave
is diffeomorphic to M . We do all calculation using the NA differential
geometry tools developed in the previous section. Final results (in phase
space) we project to the space-time, using again a leaf of constant momenta.
In particular, we will use the zero-momentum leaf to perform the projection.
Our procedure is ilustrated by the diagram

C∞(M)
Q // ̂C∞(M)

s∗p̄=σ
∗

��

C∞(M)

π∗

OO

Qp̄
// Ĉ∞(M)

Applying this procedure to the metric tensor g = gµνdxµ ⊗ dxν gives the
phase space metric tensor ĝMN dxM ⊗ dxN with

(
ĝMN (x)

)
=

(
gµν(x) 0

0 hµν(x)

)
. (19)

To have a non-singular metric we had to introduce an additional nonde-
generate bilinear h(x)µν dx̃µ ⊗ dx̃ν . Its choice is arbitrary, we pick up the
simplest and the most natural choice h(x)µν = ηµν .

Now we can do all calculations in phase space, using the NA differential
geometry. In particular, we calculate RicBC in terms of gAB, (14), (17).
In the end we project the result to space-time using the zero section x 7→
σ(x) = (x, 0). In particular, the projection of Ricci tensoris given by

Ric → Ric?◦ = Ric◦µν dxµ ⊗ dxν ,

Ric◦µν(x) = σ∗(Ricµν)(x, p) = Ricµν(x, 0).

Components of the lifted metric ĝMN dxM⊗dxN = gMN ?(dxM⊗?dxN ),
expanded up to first order in ~κ are given by

gMN (x) =

(
gµν(x) iκ

2 Rσνα ∂σgµα
iκ
2 Rσµα ∂σgαν ηµν(x)

)
. (20)
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Finally, components of the Ricci tensor in space-time, expanded up to first
order in ~κ follow as:

Ric◦µν = RicLCµν +
`3s
12 R

αβγ
(
∂ρ
(
∂αg

ρσ (∂βgστ ) ∂γΓLC τ
µν

)
−∂ν

(
∂αg

ρσ (∂βgστ ) ∂γΓLC τ
µρ

)
+ ∂γgτω

(
∂α(gστ ΓLC ρ

σν ) ∂βΓLCω
µρ − ∂α(gστ ΓLC ρ

σρ ) ∂βΓLCω
µν

+ (ΓLCσ
µρ ∂αg

ρτ − ∂αΓLCσ
µρ gρτ ) ∂βΓLCω

σν

− (ΓLCσ
µν ∂αg

ρτ − ∂αΓLCσ
µν gρτ ) ∂βΓLCω

σρ

))
. (21)

The vacuum Einstein equations in space-time are given by

Ric◦µν = 0. (22)

4. Conclusions

In this short contribution, we described how the R-flux (via NA differential
geometry) generates non-trivial dynamical consequences on spacetime. The
first order corrections are are independent of ~ (they are first order in

κ~ = `3s
6 ) and real-valued. To obtain the results in space-time, we used the

projection to the zero momentum leaf. Note that pulling back to a leaf
of constant momentum p = p◦ (generally) gives a non-vanishing imaginary

contribution Ric
(1,0)
µν

∣∣
p=p◦

to the spacetime Ricci tensor. Also, n-triproducts

calculated on the zero momentum leaf [2] coincide with those proposed in
[8].

We took the simplest choice of h(x)µν = ηµν . This can be changed
to a more general metric. In relation with Born geometry discussed in
[11] we can say that in our model nonassociativity does not generates
curved momentum space. It might generate a more genral deformations
with h(x)µν 6= ηµν . This has to be investigated further.

There are lots of projects to be discussed in our future work. Some of
them are: phenomenological consequences of the R-flux induced corrections
to GR solutions, construction of scalar curvature, adding matter fields,
full Einstein equations. The twisted diffeomorphism symmetry has to be
understood better, in particular its relation with the L∞ structure.
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[5] P. Aschieri, M. Dimitrijević, P. Kulish, F. Lizzi, and J. Wess, Noncommutative
Spacetimes, Springer Verlag, 2009.

R. J. Szabo, Quantum Gravity, Field Theory and Signatures of Noncommutative
Spacetime, Gen. Rel. Grav. I (42), 1-29 (2010).

R. J. Szabo, An Introduction to Nonassociative Physics, PoS CORFU2018 (2019)
100.
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