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Abstract

The definition of quantum gravity is hindered by the difficulty of reconciling the
requirements of renormalizability and unitarity. Recently it has also been pointed
out that some higher-derivative which may appear in modifications of Einstein-
Hilbert gravity terms are associated with a violation of causality at scales larger
than the Planck length [1]. This can be avoided by adding an infinite tower of mas-
sive higher spin particles, which are in fact expected in a weakly coupled string
theory. On the other hand this argument poses a crucial test for the causality
of quantum gravity theories containing only conventional particles with spin not
greater than 2.

We review several results about a class of weakly nonlocal purely gravitational
(or coupled to matter) theories that are compatible with perturbative unitarity
and finiteness at quantum level. In particular,we argue the requirement of causal-
ity can be satisfied avoiding some higher derivative terms.This result is justified
computing Shapiro’s time delay in terms of tree-level scattering amplitudes for non-
local gravity models with and without matter. We also show how generic nonlocal
gravity theories consistent with causality can be obtained by a field redefinition
from standard local theories.

1. Introduction
The major challenge of quantum gravity lies in the difficulty of reconciling
renormalizability and perturbative unitarity. In fact, the Einstein-Hilbert
action is not power counting renormalizable, but, if we introduce the infinite
number of counterterms generated by the renormalization procedure, it is
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perturbatively unitary. On the other hand, it is possible to build higher-
derivatives theories of quantum gravity that are renormalizable with finitely
many counterterms, but are non-unitary. This is the case for example of the
celebrated Stelle theory [2]. In the literature a number of possible solutions
to this puzzle have been discussed. Among them in recent years nonlocal
models received a great deal of attention both for their capability to pro-
duce an interesting phenomenology and for their remarkable properties upon
quantization. In particular, a class of weakly nonlocal gravitational theories
has been proven to be super-renormalizable (or finite) and perturbatively
unitary[3, 4, 5, 6, 7, 8]. These theories have also been studied in connection
to cosmological backgrounds and black hole solutions [9, 10, 11, 12, 13].

However the main concern about nonlocal theories is surely causality,
whose investigation has only recently been addressed in a systematic way.
In a classical theory the problem is closely related to a mathematically
sound formulation of the initial value problem whereas from the quantum
perspective nonlocality implies a new formulation of the Bogoliubov causal-
ity condition for local interactions. Remarkably, for quasi-local interactions
where the nonlocality shows up only at scales smaller than the nonlocality
scale `Λ, non causal effects remain confined within the scale `Λ [14, 15].
This has also led to the idea that for asymptotically free nonlocal theories,
this violation of microcausality may actually be undetectable [16].

In this note, we consider another notion of causality introduced by Gao
and Wald [17], according to which it is impossible to send signals faster than
what is allowed by the asymptotic causal structure of the spacetime. Its
violation has been recently discussed by Camanho, Edelstein, Maldacena,
and Zhiboedov [1], in particular in connection to Shapiro’s time delay, which
is one of the classical tests of general relativity (GR). Light propagating
near a compact object should suffer a time delay compared with the same
propagation in flat spacetime. Therefore, if we get a negative time delay,
or actually a time advancement, we have a causality violation. Exploiting
the relation between the Shapiro time delay and the scattering amplitudes
for gravitating particles in the eikonal approximation, the authors of [1]
have proven that these causality problems are produced only by the form of
the on-shell three-point functions of the theory. Therefore the most general
higher derivative gravity theory giving rise to a causality violation is at most
cubic in the Riemann tensor. In particular their analysis applies to a high
energy scattering process in which gravity is still weakly coupled. This can
be achieved if the impact parameter b can be chosen such that

`P � b� `Λ , (1)

where `P the Planck scale, and `Λ the non locality scale. In such cases the
loss of causality can be evaded by adding massive higher spin particles with
spin J > 2 and mass m2 ∼ `−2

Λ .
In the following we want to argue that the terms responsible for this

causality violation do not need to show up in a nonlocal theory of quantum
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gravity of the kind studied in [3, 4, 5, 6, 7, 8]. So these theories turn out to
be consistent even without the introduction of an infinite tower of massive
higher spin fields. First, in section 2. we review some essential features of
the class of theories under consideration, in particular their renormalization
properties and perturbative unitarity. Then, in section 3. we review results
about scattering amplitudes in weakly nonlocal theories pointing out the
crucial role played by a theorem relating tree-level amplitudes in theories
related by field redefinitions [22, 23]. In section 4. we finally report about
the results of [24], where the problem of causality has been addressed.

2. Weakly nonlocal gravity
We investigate the class of theories defined by the action

Sg =
2

κ2
D

∫
dDx
√
−g [R+Gµνγ(2)Rµν + V (R)] , (2)

where κ2
D = 32πG. Given the non-locality scale σ ≡ `2Λ, the form factor

γ(2) is defined by

γ(2) =
eH(σ2) − 1

2
, (3)

where the function expH(z) is asymptotically polynomial in a conical region
C around the real axis, namely

| expH(z)| → |z|γ+N+1 for |z| → +∞, (4)

with N an integer defined in terms of the spacetime dimension D so that
2N + 4 = D (if D is even) or 2N + 4 = D+ 1 (if D is odd). This condition
is necessary to avoid the appearance of nonlocal counterterms in the UV
regime. An example due to Tomboulis [4] is

HT (z) =
1

2

[
Γ
(
0, p(z)2

)
+ γE + log

(
p(z)2

)]
, (5)

where p(z) is a polynomial of degree γ+N+1, Γ(a, z) the incomplete Gamma
function and γE the Euler-Mascheroni constant. The local potential V (R)
is at least cubic in the curvature, namely V ∼ O(R3), but quadratic in the
Ricci tensor, and is taken to contain at most 2γ + 2N + 4 derivatives.

These choices are motivated by inspection of quantum divergence in
the UV regime. In fact the graviton propagator scales as k−(2γ+2N+4) and
the vertices contain terms whose leading behavior is just the inverse. This
determines the upper bound on the superficial degree of divergence of any
graph G, ω(G) ≡ DL + (V − I)(2γ + 2N + 4). We find in a spacetime of
even or odd dimension respectively:

ω(G)even = Deven − 2γ(L− 1), ω(G)odd = Dodd − (2γ + 1)(L− 1) . (6)
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Thus, if γ > Deven/2 or γ > (Dodd − 1)/2, only 1-loop divergences survive.
Therefore, the theory is super-renormalizable and only a finite number of
operators of mass dimension up to MD has to be included in the action for
renormalization in even dimensions. In odd dimensions, due to dimensional
reasons, there are no divergences at one loop and the theory is automatically
finite. The freedom in the choice of the potential V (R) can be used to "kill"
the one-loop divergences in even dimensions. For example, in 4 dimensions
it is possible to prove that the two quartic killer operators

s1R
2 2γ−2R2 + s2RµνR

µν 2γ−2RρσR
ρσ (7)

give contributions to the beta functions of the couplings for R2 and R2
µν

which are linear in their front coefficients s1 and s2 so that finiteness can be
achieved by choosing them so that βR2 = βR2

µν
= 0. The crucial point for

the following is that the killer terms should be in general at least quadratic
in the Ricci tensor.

One can easily find from the kinetic term the two-point function in the
harmonic gauge (∂µhµν = 0)

O−1 ∼ 1

k2eH(k2/Λ2)

(
P (2) − P (0)

D − 2

)
, (8)

where P (0) and P (2) are the usual spin 2 and spin 0 projectors. Therefore
perturbative unitarity together with the absence of gauge invariant poles
other than the graviton pole requires that expH(z) be real and positive
on the real axis and without zeros on the whole complex plane |z| < +∞.
This choice however implies a subtlety related to the fact that amplitudes
are well-defined as integrals along certain loop integration contours and in
a certain regime of external momenta, which is typically the Euclidean one.
The vertices we have defined in order to achieve UV finiteness must decrease
sufficiently fast along some directions in the complex plane, namely the ones
corresponding to Euclidean momenta. However for the non-polynomial en-
tire functions this necessarily implies a fast growth in other directions in
the complex plane, thus generally preventing the usual Wick rotation. This
could generically point at a violation of perturbative unitarity. However,
the theories considered in this note turn out to be unitary at perturbative
level to all perturbative orders in the loop expansion as rigorously and ex-
tensively proved in [18] and more recently in [19, 20, 21] The proof is based
on an analytic continuation of the external particles’ energies from imag-
inary to real values. It turns out that the Landau singularities, and the
discontinuities of the amplitudes are the same of a local theory at any per-
turbative order in the loop expansion. This is a consequence of the classical
spectrum of the theory that is the same of the local theory. Therefore, the
Cutkosky cutting rules are the same of the local theory. Finally, there is no
contribution of cut diagrams corresponding to anomalous thresholds to the
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imaginary part of the scattering amplitudes as proved in [19, 21]. Indeed,
if a diagram is cut in less then two or more then two parts the contribution
to the discontinuities vanishes as a consequence of the energy momentum
conservation.

3. Scattering amplitudes in higher derivative gravity theo-
ries

We here review some results about scattering amplitudes in higher deriva-
tive gravity theories, in particular four-graviton tree-level ones in the case
when all higher derivative terms are at least quadratic in the Ricci tensor.
For the sake of clarity, we first consider an action

Sg = −2κ−2
D

∫
dDx
√
−g
(
R+Rγ0R+Rµνγ2R

µν +

(Rµνρσγ4R
µνρσ − 4Rµνγ4R

µν +Rγ4R)
)
, (9)

where γ0, γ2, γ4 are generic functions of σ2. As observed in [22], in such
cases the computation can be addressed by standard Feynman diagram
techniques due to a number of simplifications. First of all, we note the last
term is the famous Gauss-Bonnet density (GB), which is topological in four
dimensions whereas for generic higher dimensions it gives rise to vertices
only. Furthermore, as the process involves only three-graviton vertices with
two gravitons on-shell and one off-shell and a four-graviton vertex with
all external legs on-shell, we can make full use of the linearized vacuum
equation of motion for the physical field hµν in the harmonic gauge, i.e.
�hµν = 0. Actually, we can choose polarizations satisfying the conditions
∂µhµν = hµµ = 0 all along the computation, which greatly simplifies the
algebra. In fact, these conditions imply that all the scalar operators are
vanishing on-shell at linear order in hµν , including the scalar curvature R(1)

and the root of metric determinant
√
−g (1). One can further show that

R
(1)
µν = 0 due to the linearized EOM. We can express all the amplitudes

in terms of the Mandelstam variables s = 4E2, t = −2E2 (1− cos θ) and
u = −2E2 (1 + cos θ), with E the energy and θ the scattering angle in the
center-of-mass reference frame.

In the case where γ0, γ2, γ4 are constants, for gravitons with positive
helicity, one finds for D = 4, 5, 6

AD=4 (++,++) = i
1

κ2
4

4E2

sin2 θ
, (10)

AD=5 (++,++) =

−i 2

κ2
5

{
16E6γ2

4

[
1 + 8E2(3γ0 + γ2)

]
(1− 4E2γ2) [3 + 4E2(16γ0 + 5γ2)]

− 2E2 1

sin2 θ

}
,

(11)
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AD=6 (++,++) =

−i 2

κ2
6

{
8E6γ2

4

[
1 + 8E2(3γ0 + γ2)

]
(1− 4E2γ2) [1 + 2E2(10γ0 + 3γ2)]

− 2E2 1

sin2 θ

}
.

(12)

Remarkably, in 4 dimensions, where γ4 cannot enter the amplitude because
of the Gauss-Bonnet theorem, the result coincides with the one expected
in Einstein theory by dimensional analysis and symmetry arguments . In
particular no term scaling as E4 in the UV shows up as it would be natural
to expect in a four derivative theory. This is the result of non-trivial cancel-
lations between the massive poles in the propagator and the three-graviton
vertices and between the contact and exchange diagrams. This result can
be also understood as the one consistent with the natural expectation in the
limit where the Einstein term can be dropped out only leaving the scaleless
quadratic terms. They would be expected to naively give amplitudes ∼ E4,
but this cannot happen because the graviton field is dimensionless and there
is no other scale. So the amplitude is actually expected to vanish. In D > 4
γ4 enters the amplitude, but only quadratically whereas the expected linear
contribution is absent due to a cancellation between the contact diagram
with a vertex from the Gauss-Bonnet term and the exchange diagrams with
two different vertices (one from GB, the second one from standard terms R,
R2 or R2

µν). Whereas in the ultraviolet regime the amplitude scales as E4,
in the infrared one finds arbitrary powers of E2 associated with the mas-
sive poles in the propagators which cannot cancel with the three-graviton
vertices of the Gauss-Bonnet density.

For weakly nonlocal gravity the amplitude can be also performed str-
aightforwardly if γ4(�) = 0. Infact, as on-shellR ∼ O(h2) andRic ∼ O(h2)
(whereas Riem ∼ O(h)), the form factors are spectators in the expansion
in the number of gravitons and many results for the Stelle gravity apply
to the general nonlocal theory. For the three exchange diagrams and the
contact one, we find

As(++,++) =

−2κ−2
4

(
−9

8

t(s+ t)

s
+

9

32
γ2(s)

(
s2 + (s+ 2t)2

)
+

9

8
s2γ0(s)

)
, (13)

At(++,++) = −2κ−2
4

(
−1

8

(
s3 − 5s2t− st2 + t3

)
(s+ t)2

s3t

+
1

16
γ2(t)

(
2s4 − 10s3t− s2t2 + 4st3 + t4

)
(s+ t)2

s4
+

1

8
γ0(t)

t2(s+ t)4

s4

)
,

(14)
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Au(++,++) = −2κ−2
4

(
−1

8

(
s3 − 5s2u− su2 + u3

)
(s+ u)2

s3u
+

1

16
γ2(u)

(
2s4 − 10s3u− s2u2 + 4su3 + u4

)
(s+ u)2

s4
+

1

8
γ0(u)

u2(s+ u)4

s4

)
,

(15)
Acontact(++,++) =

−2κ−2
4

(
−1

4

s4 + s3t− 2st3 − t4

s3
− 9

32
γ2(s)

(
s2 + (s+ 2t)2

)
−9

8
s2γ0(s)

− 1

16
γ2(t)

(
2s4 − 10s3t− s2t2 + 4st3 + t4

)
(s+ t)2

s4
−1

8
γ0(t)

t2(s+ t)4

s4
−

1

16
γ2(u)

(
2s4 − 10s3u− s2u2 + 4su3 + u4

)
(s+ u)2

s4
−1

8
γ0(u)

u2(s+ u)4

s4

)
,

(16)
where the possible poles associated with γ0 and γ2 cancel separetely in each
channel. Once again, the amplitude

A(++,++) = As(++,++) +At(++,++)+

Au(++,++) +Acontact(++,++) = A(++,++)EH , (17)

coincides with the one in Einstein-Hilbert theory.
These results, which may look somewhat surprising, find actually a very

natural explanation in terms of a field redefinition theorem [22, 23] that
allows to map nonlocal field theories to local ones at tree-level.

In particular, let us consider two general weakly nonlocal actions, name-
ly S′(g,Φa) and S(g′,Φ′a), respectively defined in terms of the fields g,Φa

and g′,Φ′a, where g is the metric and Φa a set of matter or gauge fields, and
such that

S′(g,Φa) = S(g,Φa) + Egi (g,Φa)F
g
ij(g,Φa)E

g
j (g,Φa)

+EΦ
a (g,Φc)F

Φ
ab(g,Φc)E

Φ
b (g,Φc) , (18)

where F g and FΦ can contain derivative operators or weakly nonlocal op-
erators of the covariant 2 operator, and

Egi =
δS

δgi
, EΦ

a =
δS

δΦa
(19)
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are the EOM of the theory with action S(g,Φa). The statement of the the
theorem is that there exists a field redefinition

g′i = gi + ∆g
ijE

g
j , ∆g

ij = ∆g
ji,

Φ′a = Φa + ∆Φ
abE

Φ
b , ∆Φ

ab = ∆Φ
ba , (20)

such that, perturbatively in F g,Φ, but to all orders in powers of F g,Φ, we
have the equivalence

S′(g,Φ) = S(g′,Φ′) . (21)

The indices i, a on fields we encode all Lorentz, group indices, and the
spacetime dependence of the fields. ∆g

ij (∆Φ
ab) could be a weakly nonlocal

or quasi-polynomial operator acting linearly on the EOM Egj (EΦ
a ), and

they are defined perturbatively in powers of the operators F g,Φ, namely

∆g
ij = F gij + . . . or ∆Φ

ab = FΦ
ab + . . . . (22)

The claim above can be straightforwardly checked at the first order in the
Taylor expansion for the functional S(g′,Φ′a)

S(g′,Φ′a) = S(g + δg,Φ + δΦ) ≈ S(g) +
δS

δgi
δgi +

δS

δΦa
δΦa

= S(g) + Egi δgi + EΦ
a δΦa , (23)

which is consistent with the equivalence (21) if we assume the field re-
definitions (20) with the chosen coefficients (22). The theorem states the
equivalence of the two theories only perturbatively in F g,Φ, so that the two
theories do not need to be equivalent in all aspects. For example S′(g,Φ)
can have additional poles in the spectrum compared with S(g′,Φ′) and
also the quantum behaviors of the the theories can be completely differ-
ent. However, the theorem applies to all the n-points tree-level functions
whose external legs are on the mass-shell shared by the two theories, and
this explains the results found by direct computation for theories that are
quadratic in both the Ricci and scalar curvature and lack a term quadratic
in the Riemann tensor.

4. Shapiro’s time delay
The results of the previous section can be nicely translated in the language
of Shapiro’s time delay. This can in fact be recovered from the scattering
amplitudes in the so-called eikonal approximation, which resums a particu-
lar set of diagrams (horizontal ladders) in the deflectionless limit t/s << 1.
s is large compared to the inverse of the nonlocality scale `−2

Λ , but still well
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below the Planck scale so that the theories we are considering are still weakly
coupled. Under favorable circumstances the amplitude exponentiates in the
impact parameter space [25, 26]

iAeik = 2s

∫
dD−2~b e−i~q·

~b
[
eiδ(b,s) − 1

]
, (24)

where the phase is given by

δ(b, s) =
1

2s

∫
dD−2~q

(2π)D−2
ei~q·

~bAtree(s,−~q 2) . (25)

Shapiro’s time delay is then given by

∆t = 2∂Eδ(E, b) . (26)

where E is the energy of the probe-particle.
In particular, for the action (9), with γ0 = γ2 = 0 and γ4 = λGB a

constant, one finds for the four graviton amplitude in the Regge limit [27]

At = AtEH +AtGB ≈ −
8πGs2

t
(ε1 · ε3)(ε2 · ε4)

+
κ2
DλGBs

2

t
(kµ2k

ν
4ε
ρ
2νε4ρµε1 · ε3 + kµ1k

ν
3ε
ρ
1νε3ρµε2 · ε4) ,

where κ2
D = 32πG, the momenta of the four gravitons k1, k2, k3, k4 are all

incoming, i.e.
∑4

i=1 ki = 0, and εi (i = 1, . . . , 4) are the polarizations of
the gravitons. Choosing the metric ds2 = −dudv +

∑D−2
i=1

(
dxi
)2, we can

evaluate this amplitude in the following momentum configuration

k1µ =

(
ku,
−→q 2

16ku
,
−→q
2

)
, k3µ = −

(
ku,
−→q 2

16ku
,−
−→q
2

)
k2µ =

( −→q 2

16kv
, kv,−

−→q
2

)
, k4µ = −

( −→q 2

16kv
, kv,
−→q
2

)
(27)

s ' 4kukv, t ' −(−→q )2 ,

where we just kept the leading order in the t/s expansion, assuming t/s� 1.
We also take the polarizations εµν = εµεν , given by

εµ1 =

(
−
−→q · −→e 1

2ku
, 0,−→e 1

)
, εµ3 =

(−→q · −→e 3

2ku
, 0,−→e 3

)
(28)

εµ2 =

(
0,
−→q · −→e 2

2kv
,−→e 2

)
, εµ4 =

(
0,−
−→q · −→e 4

2kv
,−→e 4

)
. (29)
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Choosing e1 = e3 and e2 = e4 we can compute the phase (25) for the
Einstein-Hilbert term

δg(b, s) =
Γ
(
D−4

2

)
π
D−4
2

Gs

bD−4
(e1 · e3)(e2 · e4) , (30)

and for the Gauss-Bonnet term

δGB(b, s) = 4λGB

((
eij1 e

ij
1

)
eij2 e

ik
2 +

(
eij2 e

ij
2

)
eij1 e

ik
1

)
∂bi∂bj

Γ
(
D−4

2

)
π
D−4
2

Gs

bD−4

= −4λGB
Γ
(
D−4

2

)
π
D−4
2

Gs

bD−2
[2(e1 · e1)(e2 · e2)

−(D − 2)(n · e1)2 − (D − 2)(n · e2)2
]
, (31)

where ~n ≡ ~b/b. The total contribution to the phase is given by the sum of
(30) and (31), namely

δg−GB(b, s) = δg(b, s) + δGB(b, s). (32)

Finally, the Shapiro’s time delay is

∆tg−GB =
Γ
(
D−4

2

)
π
D−4
2

16EG

bD−4
(e1 · e1)(e2 · e2)

[
1 +

4λGB(D − 2)(D − 4)

b2

(
(n · e1)2

e1 · e1
+

(n · e2)2

e2 · e2
− 2

D − 2

)]
. (33)

We can see that if the impact factor b2 becomes small, b2 < λGB, the third
term in (33) can be bigger then the first two, depending on the sign of λGB

and the polarizations. Therefore, we can have a time advance and causality
is violated.

On the other hand, we saw in the previous sections that for theories
that are quadratic in both the Ricci and scalar curvature and lack a term
quadratic in the Riemann tensor, the tree-level amplitude exactly coincides
with the Einstein-Hilbert one. The corresponding time delay is

∆tg =
Γ
(
D−4

2

)
π
D−4
2

16EG

bD−4
(e1 · e3)(e2 · e4) , (34)

and of course no time advancement is possible.
Actually, any nonlocal theory that is tree-level equivalent by the field

redefinition theorem to a causal local one is causal too. In other words,
given a causal (possibly local) theory, the theorem provides an algorithm for
constructing a full class of higher derivative (even non-local) causal theories.
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An explicit example of a nonlocal theory involving gravity, one gauge
field, and a scalar field is the one given by the action

L =
2

κ2
D

[
R+

(
Gµν −

κ2
D

2
(TAµν + T φρσ)

)
Fµν,ρσg

(
Gρσ −

κ2
D

2
(TAρσ + T φρσ)

)]

−1

4
FµνF

µν +∇µFµν FA∇ρF ρν

+
1

2
φ(2−m2)φ+ φ(2−m2)F φ (2−m2)φ , (35)

where the analytic functions of the d’Alembertian operator F g, FA, F φ and
the second rank tensors TAµν , T

φ
µν are defined as follows,

Fµν,ρσg ≡
(
gµρgνσ − 1

2
gµνgρσ

)(
eHg(2) − 1

2

)
,

FA ≡ 1

2

(
eHA(2) − 1

2

)
,

F φ ≡ 1

2

(
eHφ(2−m2) − 1

2−m2

)
,

TAµν ≡ FµσF σν −
1

4
FµνF

µν ,

T φµν ≡ ∂µφ∂νφ−
1

2
gµν(∂λφ∂

λφ+m2φ2) . (36)

Hg , HA and Hφ are form factors suitably chosen so that the theory is
unitary and finite at quantum level in odd dimension (in particular in D =
5). In particular the theory (35) has the same spectrum of the equivalent
local theory, namely the graviton, the photon, and the real scalar field (see
[5, 7, 8] for more details) and by the field redefinition theorem all the tree-
level n-point functions for the theory (35) are identical to the ones in local
Einstein-Hilbert gravity coupled to the local Maxwell field, and a local scalar
field. It is straightforward to prove that the theory above satisfies the field
redefinition theorem, namely it is equivalent to Einstein’s gravity minimally
coupled to the electromagnetic field and scalar matter. Therefore, all the
tree-level n-point functions for the theory (35) are identical to the ones
that one can compute in local Einstein-Hilbert gravity couple to the local
Maxwell field, and a local scalar field. In particular we can consider the
elastic scattering of gravitons on massive scalars, and the photon-graviton
scattering, whose amplitudes read

A(h, φ;h, φ)2;2 = 8πG
(m4 − su)2

t(s+m2)(u+m2)
,
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A(h, φ;h, φ)−2;2 = 8πG
m4t

(s+m2)(u+m2)
, (37)

A(h,A;h,A)1,2;1,2 = −8πG
u2

t
,

A(h,A;h,A)1,−2;1,−2 = −8πG
s2

t
, (38)

plus the ones one can obtain by parity conjugation.
Taking the massless limit of (37), the helicity flip amplitude vanishes,

while

A(h, φ;h, φ)2;2 = 8πG
su

t
. (39)

All the above amplitudes in the eikonal limit s� t simplify to:

−8πG
s2

t
, (40)

and the time delay is the same we have computed for the four graviton
amplitudes. Therefore, the nonlocal theory (35) is causal as well as the
local Einstein-Maxwell-scalar theory.

One could wonder whether causality can still be preserved in a theory
where the nonlocality explicitly shows up in the amplitudes, i.e. in cases
where the field redefinition theorem cannot be applied. An indication that
this is actually possible comes from the theory whose action consists of (2)
and the minimally coupled ordinary two-derivatives scalar matter,

S = Sg +

∫
dDx
√
−g
(
−1

2
gµν∂µφ∂νφ−

1

2
m2φ2

)
. (41)

Using the graviton propagator (8), the tree-level gravitational scattering
amplitude for 2-scalars in 2-scalars can be easily obtained (we here assume
m = 0):

As = −8πG
ut

s
e−H(s) , At = −8πG

s(s+ t)

t
e−H(t) ,

Au = −8πG
st

u
e−H(u) . (42)

In the Regge limit t� sthe leading contribution comes from the amplitude
in the t-channel, namely

At(s, t) ≈ −8πG
s2

t
e−H(t) . (43)
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For D > 4 there are no issues related to infrared divergences and we can
now compute the phase (25) in D = 5 ,

δ(b, s) =
1

2s

∫
d3~q

(2π)3
ei~q·

~bAt(s,−~q 2)

= 4πGs

∫
d3~q

(2π)3
ei~q·

~b e
−H(−~q 2)

~q2

=
2Gs

π

∫
dq

sin(bq)

bq
e−H(−q2) , (44)

where q = |~q|. In particular, for the form factor

e−σ2 , (45)

which emerges naturally in string field theory [29, 30, 31, 32], one finds the
analytic result

δ(b, s)SFT = Gs
Erf(b/2`Λ)

b
, (46)

which reduces to the one in Einstein’s theory for b� `Λ, namely

δ(b, s)SFT → δEH(b, s) =
Gs

b
. (47)

The corresponding time delays are

∆tSFT =
16EG

π
π

Erf(b/2`Λ)

b
, (48)

∆tEH =
16EG

π

π

b
. (49)

In Fig.1 we plot ∆tT for the form factor (5), which has been obtained
numerically, together with ∆tSFT and ∆tEH. Very similar results can be
obtained for different values of α and γ

From the analytical results as well as from the plots, it is clear that the
Shapiro’s time delay never becomes negative and the causality condition is
satisfied up to and beyond the non locality scale `Λ.

5. Conclusions
Weakly nonlocal theories are an interesting arena where such crucial ideas
about quantum gravity as ultraviolet finiteness, perturbative unitarity and
causality can be tested in a very straightforward way thanks to the powerful
formalism of quantum field theory. In particular we have given evidence that
in a lot of cases we can extend Einstein-Hilbert gravity without violating
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Figure 1: From top to bottom the lines represent respectively the following
Shapiro’s delays: ∆tEH, ∆tT (for γ = 3), and ∆tSFT. We also assumed
`Λ = 1.

the notion of causality related to Shapiro’s time delay and discussed in
[1]. Contrary to what happens in weakly coupled string theory, causality
is not achieved by the introduction of an infinite tower of massive higher
spin fields, but by avoiding the higher-derivative terms which could cause a
Shapiro time advance. This has been proven to be possible in several cases.
In particular a field redefinition theorem allows to construct a wide class
of nonlocal theory for matter coupled to gravity compatible with causality.
As a particular applications of the theorem, we have discussed the Einstein-
Maxwell-Scalar nonlocal field theory, which can be proven to be causal,
unitary, and finite in the ultraviolet. Other examples discussed in [24] are
the N = 1 nonlocal supergravity [28] and Lee-Wick gravity [33, 34, 35, 36,
37]. In general, causality represents a valuable guide principle to understand
what kind of higher derivative terms can show up in a consistent quantum
gravity theory.
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