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Abstract

We review our recent work on quantum foundations of quantum mechanics,
quantum field theory and quantum gravity (formulated as metastring theory) and
various implications for the problems of dark matter and dark energy. The first
point concerns the new understanding of quantum theory via the concept of quan-
tum (modular) spacetime endowed with manifest non-locality that is consistent
with causality. This view implies the consistency of the fundamental length and
Lorentz symmetry, based on the principle of relative (observer dependent) locality.
The geometry of such quantum spacetime is encoded in the new concept of Born
geometry. This in turn leads to a novel understanding of quantum field theory
in a manifestly bi-local representation endowed with metaparticle quanta. A fully
dynamical quantum spacetime, with a dynamical Born geometry, leads to quan-
tum gravity (a quantum theory of dynamical geometry of quantum non-locality)
in the guise of metastring theory. This generic formulation of string theory implies
a radiatively stable positive cosmological constant (viewed as a curvature of the
dual spacetime) as a model of dark energy in the observed classical spacetime,
as well as metaparticle quanta (the zero modes of the metastring) as the natural
quanta of dark matter in this approach.

1. Introduction and overview

In this talk I review recent work [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] on quantum foun-
dations of quantum mechanics, quantum field theory and quantum gravity
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Hübsch, D. Edmonds, T. Takeuchi, D. C. Dai, D. Stojkovic, J. H. Simonetti, M. Kavic
and V. Jejjala, for recent illuminating collaborations and insightful discussions. DM
thanks the organizers of the international conference of the Polish Society on Relativity,
the Bangkok workshop on High Energy Theory, the Multimessenger Universe conference
at Penn State’s Institute for Gravitation and the Cosmos, the 10th Mathematical Physics
Meeting in Belgrade, Serbia, the Miami winter conferences, and the conference on quan-
tum gravity phenomenology in Granada, Spain, for kind hospitality and invitations to
present this talk. The research of DM is supported in part by the US Department of
Energy (under grant DE-SC0020262) and the Julian Schwinger Foundation.
† e-mail address: dminic@vt.edu

183



184 -D. Minić

(in the form of metastring theory) as well as unique implications for the
problems of dark matter and dark energy. The starting point addresses
the new understanding of quantum theory using the concept of quantum,
or modular, spacetime endowed with manifest non-locality that is consis-
tent with causality. This view implies the consistency of the fundamental
length and Lorentz symmetry, based on the principle of observer based, or
relative, locality. The geometry of such quantum spacetime is encoded in
the new concept of Born geometry. This leads to a new understanding of
quantum field theory in a manifestly bi-local representation endowed with
metaparticle quanta. A fully dynamical quantum spacetime (a dynami-
cal Born geometry) leads to a theory of quantum gravity in the form of
metastring theory (a robust quantum theory whose geometry is the Born
geometry of quantum non-locality). This generic formulation of string the-
ory implies a radiatively stable positive cosmological constant (dark energy)
[11] in the observed classical spacetime and metaparticle quanta (the zero
modes of the metastring) representing the natural quanta of dark matter
[12] (correlated to dark energy and visible matter).

The logic of our story is very similar to the path that leads from the
Minkowski geometry of special relativity via relativistic non-gravitational
field theory to a dynamical spacetime of general relativity. In our case
we start with a hidden geometry in quantum theory (Born geometry) and
proceed to its dynamical implementation in quantum gravity (formulated
as a metastring theory) with implications for quantum field theory (for-
mulated in a way that takes into account the hidden Born geometry) with
implications for the observed world: metaparticles as dark matter quanta,
and dark energy emerging from the geometry of the dual spacetime. In
some sense this story is a sharpening of the modern approaches to non-
perturbative quantum physics [13], using a simple but crucial insight about
a completeness of quantum kinematics of discretized physical systems [14].

In particular, in [5] we have shown that any quantum theory is endowed
with a generic quantum polarization associated with modular spacetime [4].
The generic polarization manifestly realizes quantum non-locality (associ-
ated with quantum superposition principle) that is consistent with causal-
ity, and reveals a novel underlying geometry structure, that we call Born
geometry [1, 2], which unifies symplectic, orthogonal and conformal geome-
tries. Born geometry turns out to be fundamental in a particular quantum
theory that consistently propagates in this geometry - this turns out to be
string theory formulated in a generalized-geometric and intrinsically non-
commutative, doubled, form (that we call metastring theory) [3, 6, 7, 8].
The zero modes of the metastring define a new concept, called metaparti-
cle, that explicitly realizes the geometry of modular spacetime [9], and that
could be considered as an explicit prediction of the modular representation
of quantum theory. The metaparticle [10] is associated with a modular gen-
eralization of quantum fields which can be viewed as low energy remnants
of metastring fields.

Note that from this new viewpoint [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] quantum
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gravity is essentially defined as “gravitization of the quantum”, that is, as
a theory of a dynamical Born geometry (for more on Born geometry, see
[15]). As such it incorporates the concept of Born reciprocity [16] as a
covariant implementation of T-duality, the fundamental relation between
short and long distance physics in string theory, as well as the new idea of
relative (or observed dependent) locality [17].

In the first part of this talk we describe the hidden quantum spacetime
geometry underlying the generic representation of quantum theory, includ-
ing quantum field theory (which renders the generic modular representation
manifestly non-local) and then in the second part we find that the same
(and, in general, dynamical) geometric structure underlies metastring the-
ory, a manifestly T-duality covariant formulation of string theory, viewed
as a consistent theory of quantum gravity and matter. Thus quantum
gravity “gravitizes” the quantum spacetime geometry. Finally, in the last
part we discuss a robust effective description of such a theory of quantum
gravity at long distance that leads to a non-commutative (yet covariant)
effective field theory, with metaparticle quanta, as implied by an intrin-
sic non-commutativity of closed string theory, and we discuss some of its
natural consequences for the problems of dark energy and dark matter.

2. Quantum theory from quantum spacetime

The fundamental reason for the existence of modular polarizations in quan-
tum theory can be seen as follows [5]: If one imagine that a quantum system
is formulated on a lattice (as assumed in the modern (Wilsonian) non-
perturbative approaches [13]), then a theorem due to Zak [14] states that a
complete set of quantum numbers needed to describe any quantum system
would require both quantum numbers associated with the lattice and its
inverse. This is easy to see by realizing that non-commuting Hermitian op-
erators, such as coordinates and momenta, [q, p] = i~, when exponentiated,
together with the appropriate lattice spacing a and its inverse 2π~

a , com-

mute, that is, [exp( i~q
2π~
a ), exp( i~pa)] = 0. Such unitary observables were

labeled as “modular” by Aharonov [18], and have also appeared in other
discussions of the fundamental issues in quantum theory [19]. Note that
these variables are purely quantum, in the sense that their formal ~ → 0
limit is singular. Also, even their commutators are zero, the associated
Poisson brackets are non-zero, as these are unitary (phase) variables. Fi-
nally, the classical limit is defined by starting with a modular formulation
and defining an appropriate “extensification” [5]. Thus, in principle, there
are many consistent classical limits (as suggested by the consistent history
approach to quantum theory [20]). As we shall in what follows these purely
quantum variables will appear in the context of quantum field theory as
well.

So we are instructed to look at a complete set of unitary operators (as
opposed to a complete set of Hermitian operators). Let us look at the sim-
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plest example of the q and p operators. The commuting subalgebra of the
original non-commuting [q, p] = i~ algebra, can be completely described by
self-dual lattices (endowed with the natural symplectic form (ω) coming
from the commutator bracket). These in turn represent a discretization of
a phase space (in general fully covariant) defined by q and p and when lifted
to the original non-commutative algebra, require extra data associated with
the lift that is described by a doubly orthogonal (O(d, d), where d denotes
the spacetime dimension) metric η (a symmetric counterpart of the anti-
symmetric ω, associated with Sp(2d) transformations). Finally, in order to
define the vacuum state on this self-dual lattice, we need a conformal struc-
ture O(2, 2(d− 1)) [5]. This triplet of structures define what we call Born
geometry [1, 2] associated with the modular representation of quantum the-
ory [5], which naturally captures quantum non-locality that is consistent
with causality, given the quantum nature of the unitary operators and the
fact that the triple intersection of Sp(2d), O(d, d) and O(2, 2(d− 1)), gives
the Lorentz group [6].

We now formalize these insights about the hidden quantum spacetime
geometry of quantization [5], which will, perhaps surprisingly, take us all
the way to quantum gravity in the guise of an intrinsically non-commutative
formulation of string theory. We start with the Heisenberg (or Weyl-
Heisenberg) group, which is generated, on the level of the corresponding
algebra, by the familiar position q̂a and momentum p̂b operators:

[q̂a, p̂b] = i~δab . (1)

It will be convenient to introduce a length scale λ and a momentum scale
ε, with λε = ~. Then, let us introduce the following notation x̂a ≡
q̂a/λ, ˆ̃xa ≡ p̂a/ε,, with [x̂a, ˆ̃xb] = iδab . Even more compactly let us sugges-
tively write

XA ≡ (xa, x̃a)
T , [X̂a, X̂b] = iωAB, (2)

with 1
2ωABdX

AdXB = 1
~dpa ∧ dq

a, where ωAB = −ωBA is the canonical
symplectic form on phase space P. The Heisenberg group HP is generated
by Weyl operators [21] (K stands for the pair (k̃, k) and ω(K,K′) = k · k̃′−
k̃ · k′)

WK ≡ e2πiω(K,X). (3)

These form a central extension of the translation algebra

WKWK′ = e2πiω(K,K′)WK+K′ . (4)

The projection π : HP → P (where π : WK → K) defines a line bundle
over P (in principle a covariant phase space of quantum probes). In this
formulation, states are sections of degree one

WK′Φ(K) = e2πiω(K,K′)Φ(K + K′). (5)
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In this language, geometric quantization means to take a Lagrangian L ∈ P,
so that states descend to square integrable functions on L.

A Lagrangian submanifold L is a maximally isotropic subspace L with
ω|L = 0, and thus {∂/∂qa} ∈ TP defines a Lagrangian submanifold, or
“space”. (Indeed, ω(∂/∂qa, ∂/∂qb) = 0.) This can be understood as a clas-
sical characterization of space (and in the covariant context, of spacetime),
as a “slice” of phase space. How about a purely quantum characterization
of space? We claim that quantum theory reveals a new notion of quantum
space (and, more covariantly, a new notion of quantum spacetime).

Note that for space-like separations the operators of a local quantum
field theory commute. Thus in order to understand the meaning of quan-
tum spacetime (quantum Lagrangian), we need to look at a maximally
commuting subalgebra of the Heisenberg algebra and the representation
that diagonalizes it. Thus, borrowing from notions of non-commutative al-
gebra and non-commutative geometry [22] (such as the theorem of Gelfand-
Naimark [23]), we can say that a Lagrangian submanifold is a maximally
commutative subgroup of the Heisenberg group. If we accept this notion
of a Lagrangian, then the quantum regime is very different from the clas-
sical regime. In particular the vanishing Poisson bracket {f(q), g(p)} re-
quires either f or g to be constant. However, the vanishing commutator
[f(q̂), g(p̂)] = 0 requires only that the functions be commensurately periodic

eiαp̂eiβq̂ = ei~αβeiβq̂eiαp̂, αβ = 2π/~. (6)

What is interesting here is that similar considerations led Aharonov to
introduce modular variables to describe purely quantum phenomena, such
as interference [24].

2.1. Modular variables

Modular variables are described in great detail in the very insightful book
by Aharonov and Rohrlich [24], where one can find detailed bibliography on
this subject1. The fundamental question posed there was as follows: how
does one capture interference effects (due to the fundamental linearity of
quantum theory) in terms of Heisenberg operators? For example, what are
the quantum observables that can measure the relative phase responsible
for interference in a double-slit experiment? No polynomial functions of
the operators q̂ and p̂ can detect such phases, but operators that translate
in space, such as eiRp̂/~, do. Thus the modular variables denoted [q̂] and
[p̂], which are defined modulo a length scale R (the slit spacing being a
natural choice), play a central role, where

[p]2π~/R = p mod (2π~/R) , [q]R = q mod (R) . (7)

The shift operator eiRp̂/~ = eiR[p̂]/~ shifts the position of a particle state (say
an electron in the double-slit experiment) by a distance R and is a function

1See also [19, 18].
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of the modular momenta2. These modular variables (the main examples
being the Aharonov-Bohm and Aharonov-Casher phases [24]) satisfy non-
local operator equations of motion. For example, given the Hamiltonian,
Ĥ = p̂2/2m+V (q̂), the Heisenberg equation of motion for the shift operator
is,

e−iRp̂/~
d

dt
eiRp̂/~ = − iR

~

(
V (q̂ +R)− V (q̂)

R

)
. (8)

Modular variables are fundamentally non-local in a non-classical sense,
since we see here that their evolution depends on the value of the potential
at distinct locations. Remarkably, thanks to the uncertainty principle, this
dynamical non-locality does not lead to a violation of causality [24]. One
of the characteristic features of these variables is that they do not have
classical analogues; indeed, the limit ~ → 0 of [p]h/R is ill-defined. Also
modular variables capture entanglement of continuous q, p variables.

Note that modular variables are, in general, covariant and, also, contex-
tual3. In other words, they carry specific experimental information, such
as the length R between the two-slits. However, in the context of quantum
gravity such scales are automatically built in, and the contextuality is in
principle removed. Also, the fundamental dynamical equations for modular
variables are non-local in quantum gravity because of the presence of the
fundamental length.

When exponentiated (i.e. when understood as particular Weyl oper-
ators), the modular variables naturally commute. In other words, given
[xa, x̃b] = i

2π δ
a
b , the following commutator of modular operators vanishes

[5]

[e2πix, e2πix̃] = 0. (9)

Thus a quantum algebra of modular variables possesses more commutative
directions than a classical Poisson algebra, because the Poisson bracket of
modular variables does not vanish, {e2πix, e2πix̃} 6= 0.

Here we make a historical note [26]: The above non-local equations of
motion were essentially written by Max Born, in the very first paper which
used the phrase “Quantum Mechanics” in its title, in 1924, one year before
the Heisenberg breakthrough paper. Actually, Heisenberg crucially used
Born’s prescription of replacing classical equations by the corresponding
difference equations, in order to derive what we now call the canonical
commutation relations (properly written by Born and Jordan) from the
Bohr-Sommerfeld quantization conditions.4

2There is a very close similarity here to the Galois quantum theory discussed in [25].
3Aharonov and collaborators have pushed the logic associated with modular variables

to argue for a new kind of weak measurements of such non-local variables that capture
the superposition principle of quantum theory. Similarly, Aharonov and collaborators
argue for a time symmetric formulation of quantum theory [24].

4Note that the above discrete operatorial (Born-Heisenberg-Jordan) equations of mo-
tion for modular variables can be generalized to other quantum systems [27]. Also, the
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2.2. Modular spacetime and Born geometry of quantum theory

Returning to the subject of quantum Lagrangians, notice that the quantum
Lagrangian is analogous to a Brillouin cell in condensed matter physics.
The volume and shape of the cell are given by λ and ε (i.e. ~ and GN (α′))
The uncertainty principle is implemented in a subtle way: we can specify
a point in modular cell, but if so, we can’t say which cell we are in.

This means that there is a more general notion of quantization [5],
beyond that of geometric quantization. Instead of selecting a classical po-
larization L (the arguments of the wave function, or the arguments of a
local quantum field) we can choose a modular polarization. In terms of the
Heisenberg group all that is happening is that in order to have a commu-
tative algebra, we need only

ω(K,K′) ∈ 2Z, WKWK′ = e2πiω(K,K′)WK+K′ = WK′WK′ . (10)

This defines a lattice Λ in phase space P. Finally, we specify a “lift” of the
lattice from the phase space P to the Heisenberg group HP .

Maximally commuting subgroups Λ̂ of the Heisenberg group correspond
to lattices that are integral and self-dual with respect to ω [29]. Given Wλ

where λ ∈ Λ there is a lift to Λ̂ which defines “modular polarization”

Uλ = α(λ)Wλ, (11)

where α(λ) satisfies the co-cycle condition

α(λ)α(µ)eπiω(λ,µ) = α(λ+ µ), λ, α ∈ Λ. (12)

One can parametrize a solution to the co-cycle condition by introducing a
symmetric bilinear from η and setting (with η(K,K′) = k · k̃′ + k̃ · k′,)

αη(λ) ≡ ei
π
2
η(λ,λ). (13)

Finally, when we choose a classical Lagrangian L, there is a special state
that we associate with the vacuum: it is translation invariant (which in our
context can be interpreted as “empty space”). In modular quantization
there is no such translation invariant state (because of the lattice structure).
The best we can do is to choose a state that minimizes an “energy”, which
requires the introduction of another symmetric bilinear form, that we call,
again suggestively, H. This means, first, that we are looking for operators
such that

[P̂A,Φ] =
i

2π
∂AΦ, Φ(X̂ + λ) = Φ(X̂), (14)

where the modular observables Φ(X̂ + λ) = Φ(X) are generated by the
lattice observables Uλ with λ ∈ Λ. Translation invariance would be the

appearance of the “covariant hidden spacetime x̃” bears some similarity to the Koopman-
von-Neumann theory [28].
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condition P̂|0〉 = 0. Since this is not possible, the next natural choice is
to minimize the translational energy. Therefore we pick a positive definite
metric HAB on P, and we define [5]

ÊH ≡ HABP̂AP̂B, (15)

and demand that |0〉H be the ground state of ÊH . This is indeed the most
natural choice and it shows that we cannot fully disentangle kinematics (i.e.,
the definition of translation generators) from dynamics. In the Schrödinger

case, since the translation generators commute, the vacuum state Ê|0〉 =
0 is also the translation invariant state and it carries no memory of the
metric H needed to define the energy. In our context, due to the non-
commutativity of translations, the operators ÊH and ÊH′ do not commute.
As a result the vacuum state depends on H, in other words |0〉H 6= |0〉H′ ,
and it also possesses a non-vanishing zero point energy.

Thus, modular quantization involves the introduction of three quadratic
forms (ω, η,H), i.e. what we call Born geometry [1, 2], which underlies the
geometry of modular variables.

As we will see, in the context of metastring theory, a choice of polar-
ization is a choice of a spacetime within P but the most general choice is a
modular polarization that we have discussed above. From the foundational
quantum viewpoint Born geometry (ω, η,H) arises as a parametrization of
such quantizations, which results in a notion of quantum spacetime, that we
call modular spacetime. In particular, a one dimensional (1d) modular line
is a two dimensional (2d) torus that is compact and not-simply connected.
Finally, large spacetimes of canonical general relativity (and its extensions,
like string theory) result as a “many-body” phenomenon, through a pro-
cess of tensoring (entanglement) of unit modular cells, that we refer to as
“extensification” [5].

In particular, the symplectic structure ω found in

ds2
ω =

1

2
ωABdXAdXB =

1

~
dpa ∧ dqa,

is encoded in the canonical Heisenberg commutator between qa and pa.
The generalized, quantum, metric H comes from the Born rule in quantum
theory ds2

H = HABdXAdXB = 1
~(dqadq

a

GN
+GNdpadp

a). For weak gravity, this

metric reduces to the spacetime metric (where spacetime can be viewed
as a slice of phase space). Due to gravity’s extreme weakness, we only
see spacetime metric at low energies. (The ratio ε/λ defines a tension; if
this is identified with c3/GN , it is enormous, ∼ 1032kg/sec.) Therefore,
in this formulation the usual dynamical spacetime metric is the low energy
leftover of the quantum metric. Finally, the polarization (or locality metric)
η encodes the distinction between spacetime-like and energy-momentum-
like aspects of phase space (and in this sense it defines an analog of the
“causal” structure in phase space) ds2

η = ηABdXAdXB = 2
~dpadq

a. This
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new metric captures the essence of relative locality - when η is constant we
have absolute locality. Curving η also means “gravitizing the quantum”.
In general all three elements of Born geometry, ω, η and H are dynamical
and curved in metastring theory, as we will discuss in what follows.

Also, we have that the Lorentz group (in D spacetime dimensions) lies
at the intersection of the symplectic, neutral and doubly orthogonal groups
[5],

O(1, d− 1) = Sp(2d) ∩O(d, d) ∩O(2, 2(d− 1)), (16)

which sheds new light on the origin of quantum theory through compat-
ibility of the causal (Lorentz) structure and non-locality captured by the
discreteness of quantum spacetime. This also captures the role of relative
(observer-dependent) locality [17] needed to resolve the apparent contra-
diction between discreteness of quantum spacetime and Lorentz symmetry.

Let us end this discussion of quantum mechanics by a few comments
regarding the Stone-von Neumann theorem [30] which asserts that all rep-
resentations of the Heisenberg group are unitarily equivalent. Normally, we
think of this as a choice of basis in phase space (a choice of polarization or
classical Lagrangian), and all such choices are related by Fourier transform.
Similarly, one can pass from a classical polarization (such as the Schrödinger
representation) to a modular polarization via the Zak transform [14] (see
section 3). Note that, there is a connection on the line bundle over phase
space that has unit flux through a modular cell. (This is very similar to
Integer Quantum Hall effect.) A modular wave function is quasi-periodic

Ψ(x+ a, x̃) = e2iπax̃Ψ(x, x̃), Ψ(x, x̃+ ã) = Ψ(x, x̃). (17)

The quasi-periods correspond to the tails of an Aharonov-Bohm [31] poten-
tial attached to a unit flux. In particular, vacuum states must have at least
one zero in a cell, which leads to theta functions (the Zak transforms of
Gaussians). Note that from the point of modular polarization, the familiar
Schrödinger polarization is just a singular limit5.

3. Quantum field theory and quantum spacetime

Now we make some general comments about quantum field theory in the
modular form, following the general modular formulation of any quantum
theory. (Later we will discuss how such a formulation of quantum field
theory comes emerges from quantum gravity at large distances.) This new
modular polarization of quantum field theory reveals new structures and
sheds new light on both the short distance (UV) and long distance (IR)
physics of quantum fields, and the new definition of the continuum limit
of quantum field theories which is self-dual with respect to the UV and

5 This discussion can be also extended to a path integral formulation in modular
polarization as done by Yigit Yargic in his Perimeter Scholars International master thesis
work under Laurent Freidel.
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IR properties (resembling some crucial properties of non-commutative field
theories [32]. In particular, the modular representation of quantum field
theory introduces dual “electric” and “magnetic” variables, which are in
general, non-commuting. This general message extends our results in the
context of the 2d conformal field theory formulation of string theory in
which the explicit non-commutativity of such “electric” and “magnetic”
variables has been explicitly demonstrated [7, 8].

The general modular representation can be defined in terms of the Zak
transform of a Schrödinger representation (given in terms of wave func-
tions). Given a square normalizable wave function ψ(x) (where x ≡ q/a
and x̃ ≡ p/b, and where ab = 2π~) belonging to a Hilbert space, one defines
the modular representation as the following lattice Fourier transform (or
Zak transform)

ψa(x, x̃) ≡
√
a
∑
n

e−2πinx̃ψ(a(x+ n)). (18)

Note that if ψ(x) is a Gaussian, its Zak transform, the modular ψa(x, x̃) is
given by the doubly-period theta function associated with the lattice. (The
inverse Zak transform

Φ(x+ n) ≡ 1√
a

∫ 1

0
dx̃e2πinx̃Φa(a

−1x, x̃), (19)

illustrates that the usual Schrödinger representation is really singular, and
thus not generic.)

Now, if one second quantizes ψ(x) one naturally ends up with a quan-
tum field operator φ(x). Similarly, the second quantization of the modular
ψa(x, x̃) would lead to a modular quantum field operator φ(x, x̃)

φ(x)→ φ(x, x̃). (20)

Note that the usual wave functional approach to quantum field theory (de-
fined in terms of functionals Ψ[φ(x)] should be now defined in terms of wave
functionals of modular fields Ψ[φ(x, x̃)], where the fields φ and their duals

φ̃ in general do not commute, and thus the wave functional can be still
chosen to be a functional of φ in a very particular polarization. However,
now we have more freedom in the general modular polarization. Thus the
dual momenta p and p̃ (to x and x̃ respectively) lead, via the canonical
minimal coupling prescription, not only to the usual fields φ but also to
their duals φ̃ (see section 5). This procedure defines the modular polariza-
tion of quantum field theory in terms of the functional Zak transform of
the original wave functional

Ψ[φ(x)]→ Ψ[φ(x, x̃), φ̃(x, x̃)]. (21)

For example, the Gaussian wave functionals with non-trivial momentum
kernels (such as the ones found in the context of non-trivial interacting
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theories like 2+1 and 3+1 dimensional compact QED [33] as well as 2+1 and
3+1 dimensional Yang Mills theory [34] would be mapped into functional
theta functions.

Once again, we can understand this new view of continuum quantum
field theory as a sharpening of the canonical picture of a quantum field
theory formulated on a lattice (as assumed in the modern, Wilsonian, non-
perturbative approaches [13]), and a theorem due to Zak [14] which states
that a complete set of quantum numbers needed to describe any quantum
system would require both quantum numbers associated with the lattice
and its inverse. Thus, in general, before we take a naive continuum limit,
we need to work with the full set of quantuum spacetime data, represented
by the lattice and its dual (spacetime and its dual) as well as fields and
dual fields.

On the level of the path integral formulation (the open path integral
defines the above wave functional in terms of boundary data), one would
have to work with an explicit formulation of quantum field theory in terms
of (“electric”) quantum fields φ(x, x̃) and their (“magnetic”) duals φ̃(x, x̃)∫

“Dφ(x, x̃)Dφ̃(x, x̃)′′e
i
~Schiral[φ(x,x̃),φ̃(x,x̃)]. (22)

There is no overcounting here, because the action will turn out to be chiral.
So even though one has formally doubled the number of variables, the chiral
nature of the theory, keeps the total number of degrees of freedom the
same as in the purely electric formulation. Similarly the measure of the
path integral takes into account the chiral nature of this formally doubled
formulation of quantum field theory. That is why the doubled measure is
written under the quotation marks. By formally introducing the doublet
Z = (φ(x, x̃), φ̃(x, x̃)), we can write this doubled path integral as∫

(DZ)chirale
i
~Schiral[Z]. (23)

As usual, this formulation has to be properly regulated, but now, with
two cut-offs, with the continuum limit defined in a symmetric, self-dual
way with respect to the double RG flows thus resembling non-commutative
field theory [32], albeit with full spacetime covariance. This new insight
on quantum field theory should be important not only in the context of
quantum non-locality in quantum field theory, but also in the realms of
strong coupling and deep infrared.

4. Quantum gravity and dynamical quantum spacetime

The unexpected outcome of our research on the foundations of quantum
mechanics and quantum field theory is that this fundamental quantum
geometry of quantum theory can be realized in the context of metastring
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theory, where this quantum geometry is “gravitized” (i.e. dynamical). At
the classical level, metastring theory [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] can be
thought of as a formulation of string theory in which the target space is
doubled in such a way that T-duality acts linearly on the coordinates.
This doubling means that momentum and winding modes appear on an
equal footing. We refer to the target space as a phase space since the
metastring action requires the presence of a background symplectic form
ω. The metastring formulation also requires the presence of geometrical
structures that generalize to phase space the spacetime metric and the B-
field (where the B-field originates from the symplectic structure ω). In
fact, in the metastring we have not one but two notions of a metric. The
first metric η is a neutral metric that defines a bi-Lagrangian structure and
allows to define the classical spacetime as a Lagrangian sub-manifold6 —
more precisely, the classical spacetime is defined as a null subspace for η
which is also Lagrangian for ω. The second metric H is a metric of signature
(2, 2(D − 1)) that encodes the geometry along the classical spacetime (of
dimension D) as well as the transverse energy-momentum space geometry.
In this formulation, T-duality exchanges the Lagrangian sub-manifold with
its image under J = η−1H. Classical metastring theory is defined by the
following action [3] which realizes the above comments about quantum field
theory in the modular polarization for the special case of a two-dimensional
world-sheet quantum field theory7

Ŝ =
1

4π

∫
Σ
d2σ
(
∂τXA(ηAB + ωAB)(X)∂σXB − ∂σXAHAB(X)∂σXB

)
, (24)

where XA are dimensionless coordinates on phase space and the fields
η,H, ω are all dynamical (i.e., in general dependent on X) phase space
fields. In the context of a flat metastring we have constant ηAB, HAB and
ωAB

ηAB ≡
(

0 δ
δT 0

)
, HAB ≡

(
h 0
0 h−1

)
, ωAB =

(
0 δ
−δT 0

)
, (25)

where δµν is the d-dimensional identity matrix and hµν is the d-dimensional
Lorentzian metric, T denoting transpose.

In view of our general comments regarding the modular polarization
(quantum spacetime polarization) in quantum field theory, the metastring
sheds new light on some old questions regarding the continuum limit of
string theory [36] as well as the Wilsonian approach to string theory [37].
In the metastring formulation [3] it is convenient, as suggested by the

6We remind the reader that in symplectic geometry, a Lagrangian subspace is a half-
dimensional submanifold of phase space upon which the symplectic form pulls back to
zero. In simple terms, a Lagrangian submanifold might be the subspace coordinatized
by the q’s within the phase space coordinatized by q’s and p’s.

7See also [35].
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double field formalism [38], to introduce dimensionless coordinates XA ≡
(Xµ/λ, Pµ/ε)

T on phase space8, or equivalently, XA ≡ (xa, x̃a)
T , where λ

and ε represent the fundamental spacetime and energy-momentum scales.
Here ~ = λε and α′ = λ

ε . Given a pair (H, η) it is natural to consider the

operator J ≡ η−1H. The consistency of string theory requires J to be a chi-
ral structure, that is, a real structure (J2 = 1) compatible with η, implying
that J is an O(D,D) transformation (realizing generalized T-duality in tar-
get space). These three structures, the symplectic Sp(2D) ω, the O(D,D)
η and the SO(2, 2(D − 1)) H, define the new concept of Born geometry
[1, 2, 3, 4, 5] (see also [15]) which unifies the complex geometry of quantum
theory with the metrical geometry of general relativity and the symplectic
geometry of canonical Hamiltonian dynamics [40]. Note that in the phase
space formulation the local phase space coordinates X are quasiperiodic
XA(σ + 2π) = XA(σ) + ∆A, where ∆A is the corresponding quasiperiod
(which either vanishes for the canonical Polyakov string or is given by the
winding number in the usual treatment of T-duality on compact spaces).

The worldsheet formulation of the metastring is chiral. Thus, even
though the fields are doubled the central charges (left and right) are cL =
cR = D and we still have D = 26 for criticality. The metastring is not
manifestly invariant under the worldsheet Lorentz transformations and it
contains monodromies XA(σ + 2π) = XA(σ) + ∆A. The usual Polyakov

string can be obtained by integrating out the dual X̃, for constant η and
H backgrounds, and by supposing that the monodromies are in the kernel
of (η − ω). T-duality is implemented in target space by the action of the
chiral J operator (J ≡ η−1H, J2 = 1): X→ J(X).

The target space of the metastring is not spacetime, but, to first order,
a chiral phase space P equipped by the symplectic structure ω, and the
bilagrangian structure, and in particular, the polarization metric η which
relates to the symplectic connection of the Fedosov deformation quantiza-
tion [41] and thus leads to the star product of deformation quantization,
and finally, the quantum H metric which relates to the complex structure in
the context of geometric quantization [42], leading to the concept of Hilbert
spaces. This classical Born geometry implements the ideas of Born duality
in string theory [1, 2].

The classical equations of motion of the metastring ∂τXA− (J∂σX)A =
0, implies the relation between momenta and monodromies 2πP = J(∆).
There is soldering between worldsheet null coordinates σ± ≡ σ± τ and the
chiral target space structure ∂±XA−(P±X)A = 0, where the chiral projector
is defined as 2P± = (1 ± J). This allows us to liberate the left geometry
from the right geometry (which is reminiscent of twistor theory). The
careful analysis of the metastring action [3] shows that its symplectic form
is Ω = 1

4π

∫
δXAηAB∇σδXB, where ∇ is the generalized Fedosov connection

8 See also [39] as an early example of a phase space formulation of string theory (and
thus of relative, observer-dependent, locality in string theory).
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found in the Fedosov deformation quantization approach [41].
Also, the operator product expansion of the metastring vertex operators

Vk = εke
iKX, (i.e. modular variables) lead to the restriction of K on a double

Lorentzian integral lattice Γ, that by modular invariance, must be self-dual.
These exist in D = 2mod(8), and are unique. Criticality gives a very unique
lattice Γ = Π1,25 × Π1,25. This fact, in turn, leads to the large symmetry
structure found by Borcherds in the study of the monstrous moonshine [43]
9.

As already noted, the metastring is chiral. This requires the intro-
duction of a preferred worldsheet time coordinate which is fundamentally
Lorentzian [3]10. How can this be consistent with modular invariance?
The answer is given by employing the Giddings-Wolpert-Krichever-Novikov
construction [46]: given a Riemann surface, provided a choice of local coor-
dinates around punctures is labeled by one scalar, there exists a unique
Abelian differentional e with imaginary periods. The real part of this
Abelian differential is the modular invariant time τ = Re(e). The zeros
of e represent interaction points where the worldsheet Lorentzian cones
double. Cutting the Riemann surface along the real trajectory of e we
obtain a string decomposition of the surface. The Nakamura graphs [47]
encode this decomposition and give a very effective cell decomposition of
moduli space. Thus Nakamura graphs are the natural Feynman diagrams
for closed strings [48]11.

4.1. Non-commutativity in quantum gravity/metastring theory

The metastring formulation points to an unexpected fundamental non-
commutativity of closed string theory, that we address in what follows.
It is well established [50] that the structure of the zero mode algebra of the
compactified closed string depends on a lattice of momenta (Λ, 2η) which is
integral and self-dual with respect to a neutral metric: a so-called Narain
lattice [51]. In [1, 2, 3, 4, 5, 6, 7, 8] we have refined this structure and
we have shown that in fact the kinematical structure of the string zero
modes depends on a para-hermitian lattice: a triple (Λ, η, ω), where Λ is
a subgroup of R2d that describes the lattice of wave-covectors λK, with λ
the string length, η is a neutral metric, a symmetric bilinear form of signa-
ture (d, d), and ω is an invertible two-form. This structure needs to satisfy
two compatibility conditions: first, the lattice Λ is assumed to be integral
with respect to the para-hermitian structure, i.e., (η ± ω)(λK, λK′) ∈ Z,

9For a string theory related discussion, see [44].
10See also Witten’s treatment of Feynman’s iε prescription in string theory, which

requires doubling of Xs and the Lorentzian world-sheet, as required by metastring theory
[45].

11 Note that the metastring is bosonic, and that supersymmetry (and the superstring)
can be viewed as emergent from this more fundamental formulation (see [49]). In some
sense, fermions can be viewed as defects in modular spacetime. The bosonic degrees of
freedom associated with quanta of interactions can be viewed as deformations of modular
spacetime cells.
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for λK, λK′ ∈ Λ. Second, the metric η and the 2-form ω must be compat-
ible, in the sense that η−1ω := K is a product structure, that satisfies the
condition K2 = 1.

These two conditions are a consequence of mutual locality on the world-
sheet (i.e. worldsheet causality). It is clear that if (Λ, η, ω) is a para-
hermitian lattice, then (Λ, 2η) is a Narain lattice, so the kinematical struc-
ture that we highlight is a refinement of the usual one. The extra informa-
tion is contained in the 2-form ω. This form does not enter expressions for
the spectrum or the partition function and this why it is usually ignored.
It does enter however crucially in the definition of the vertex operator al-
gebra and parameterizes what is usually referred to as a cocycle. The role
of ω is to promote the zero mode double space P ' R2d dual to R[Λ] to the
status of phase space: P should be viewed as a symplectic manifold. At the
quantum level, both geometrical structures η and ω enter in the commuta-
tion relations of string operators. ω controls the non-commutativity of the
zero-modes while η controls the non-commutativity of the string oscillator
modes. This can be seen if one introduces a double notation for the string
coordinate X(σ) that includes the string map X and its dual X̃. The string
commutation relations, were derived in [7, 8]

[XA(σ),XB(σ′)] = 2iλ2
[
πωAB − ηABθ(σ − σ′)

]
, (26)

where θ(σ) is the staircase distribution, i.e., a solution of θ′(σ) = 2πδ(σ);
it is odd and quasi-periodic with period 2π.

Following standard practice, all indices are raised and lowered using η
and η−1. The momentum density operator is given by

PA(σ) =
1

2πα′
ηAB∂σXB(σ)

and the previous commutation relation implies that it is conjugate to
XA(σ). The two-form ω appears when one integrates this canonical com-
mutation relation to include the zero-modes, the integration constant being
uniquely determined by worldsheet causality. Denoting by (X̂, P̂) the zero
mode components of the string operators X(σ) and P(σ) we simply have
that

[P̂A, P̂B] = 0, [X̂A, P̂B] = i~δAB, [X̂A, X̂B] = 2πiλ2ωAB. (27)

This is a deformation of the doubled Heisenberg algebra involving the string
length λ as a deformation parameter.

So far we have assumed that the background is trivial, with the fields
(η, ω) constant and given by η(K,K′) = k · k̃′ + k̃ · k′, and ω(K,K′) =

k · k̃′ − k̃ · k′. As shown in [7], we can turn on non-trivial backgrounds
encoded into ω by changing the O(d, d) frame X → OX. This change
of frame preserves η but transforms ω. Any constant ω can be obtained
this way. Since ω has an interpretation as the symplectic form on the
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space of X’s, modifying ω affects the commutation relations12 [X̂A, X̂B] =
2πiλ2ΠAB,, with ΠABωBC = δAC , where we have introduced the Poisson
tensor Π = ω−1.

For instance, under a constant B-field transformation X = (xa, x̃a) 7→
(xa, x̃a + Babx

b), the trivial symplectic form ω(K,K′) = k · k̃′ − k̃ · k′ is

mapped onto ω(K,K′) = kak̃
′a − k′ak̃a − 2Babk̃

ak̃′b, and the commutators
read

[x̂a, x̂b] = 0, [x̂a, ˆ̃xb] = 2πiλ2δab, [ˆ̃xa, ˆ̃xb] = −4πiλ2Bab. (28)

We see that the effect of the B-field is to render the dual coordinates non-
commutative (and that the B-field originates from the symplectic structure
ω). More generally, we can parameterize an arbitrary O(d, d) transforma-

tion as g = eB̂Âeβ̂, where Â ∈ GL(d) and eB̂ =
(
1 0
B 1

)
and eβ̂ =

(
1 β
0 1

)
are nilpotent. eB̂ is the B-field transformation discussed above, and is as-
sociated with the usual B-field deformation in string theory. We note that
the transformation of (xa, x̃a) given above does not modify xa, and thus
fields that depend only on xa are unmodified. The β-transformation on the
other hand corresponds to the map (xa, x̃a) 7→ (xa + βabx̃b, x̃a). Equiva-
lently, it has the effect of mapping the symplectic structure to ω(K,K′) =

kak̃
′a − k′ak̃a + 2βabkak

′
b, and yields commutation relations

[x̂a, x̂b] = 4πiλ2βab, [x̂a, ˆ̃xb] = 2πiλ2δab, [ˆ̃xa, ˆ̃xb] = 0. (29)

Dramatically, the coordinates that are usually thought of as the spacetime
coordinates have become themselves non-commutative. Since this is the
result of an O(d, d) transformation, we know that it can be thought of in
similar terms as the B-field; these are related by T-duality. We are familiar
with the B-field background because we have, in the non-compact case, a
fixed notion of locality in the target space theory. However, in the non-
geometric β-field background, we do not have such a notion of locality but
we can access it through T-duality13.

We note that this intrinsic non-commutativity of string theory can be
also explicitly illustrated via a simple closed string product, equivalent to
the splitting-joining interaction of the pants diagram, that respects this
non-commutativity and is covariant with respect to T-duality [8]. This
offers new insights on the relationship between closed and open strings,

12The algebraic structure that we are working with here has an analogy in electro-
magnetism in the presence of monopoles. In that analogy, the string length becomes the
magnetic length, and the form ω becomes the magnetic field. Another analogy occurs in
quantum Hall liquids, the algebra being the magnetic algebra of the lowest Landau level.

13Note that the dilaton can be understood as coming from the volume of phase space
(see [52]). In general, for varying B-backgrounds we encounter non-associativity as well
[53], and the proper closure of such non-commutative and non-associative structure is
ensured by the equations of motion for the data of Born geometry, that is, the generalized
Einstein equations.
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and the non-perturbative formulation of closed string theory in terms of
open strings and even more fundamental (and non-commutative) partonic
degrees of freedom. Given the mechanism of tachyon condensation in the
open string sector [54] and this fundamental relation between open and
closed strings, we expect that a similar solution of the “tachyon problem”
should exist in the closed string sector as well.

4.2. Non-perturbative formulation of quantum gravity

Let us recapitulate: How does the metastring approach [1, 2, 3, 4, 5, 6,
7, 8, 9, 10] compare to the usual view of string theory? From the classic
textbook treatment of string theory [50] we know that there exists a fun-
damental relation between world-sheet conformal field theory (CFT) and
target spacetime geometry, and, in particular, that the beta function for the
background spacetime metric is the Ricci tensor to leading order, and so,
world-sheet conformal invariance implies the vacuum Einstein equations.
But string theory has other background field and fluxes and moduli. Can
we write the general CFT as a generalized Ricci flow? This is precisely the
achievement of Double Field Theory (DFT) [38].

In the metastring formulation the target space is not the index space
(the labels of the background effective field). Effective fields are associated
with the level matching constraints or mutual locality (world sheet causal-
ity). In DFT that requirement appears as the section condition. Instead
of this section condition, in the metastring we have a more general back-
ground spacetime (modular spacetime) for the string, because of the intrin-
sic non-commutativity, stemming from the general quasi-periodicity of the
worldsheet X fields. Thus even though the currents dX are periodic, the
fields X are not, and this leads to edge modes in the evaluation of the string
symplectic form, which ultimately leads to intrinsic non-commutativity of
the metastring. Similarly, mutual locality of string vertex operators implies
that, in general, they furnish a representation of a Weyl-Heisenberg alge-
bra. Note that the metastring treats the Hamiltonian and diffeomorphism
constraints together, on the same footing, and thus instead of solving the
differomorphism constraint (via level matching and the strong constraint)
we arrive at a completely new background interpretation: the modular
spacetime.

The new ingredient of the metastring, as compared to DFT is the sym-
plectic structure that controls intrinsic non-commutativity. This in turn,
with the O(d, d) structure (also associated with level matching and the
string diffeomorphism constraint) and the conformal (double metric) struc-
ture (associated with the string Hamiltonian constraint) defines the Born
geometry of the metastring. Note that now we have a new spacetime that
defines the habitat of string theory, associated with the maximally com-
muting subalgebras of the Heisenberg algebra of the intrinsic string non-
commutativity. This quantum Lagrangian is modular spacetime of the
metastring. This in turn directly relates to the quantum spacetime for-
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mulation (modular polarization) of quantum theory in general. The 1d
modular line is the 2d torus that is compact and not simply connected.
Note the Lorentz covariance of modular spacetime, because the intersec-
tion of the symplectic, O(d, d) and the double metric structures leads to
the Lorentz group.

In the context of general curved Born geometry the symplectic structure
is not closed, and we have non-associativity [53]. Finally, supersymmetry
(SUSY) is in principle emergent (as in the constructions of the superstring
from the bosonic string [49]). The uniqueness of the connection in gen-
eralized geometry can be fixed by the phase space structure, instead of
SUSY.

In thinking about this new framework for quantum gravity, the telepar-
allel formulation [55] of gravity appears as the natural language, because of
the inherent “flatness” of T-duality (which might be important in the cos-
mological context for the geometry of classical spacetime at large scales).
In this formulation, gravity is described as a Yang-Mills theory, and it is
put on the same footing as the matter sector. (It is an interesting question
to understand whether teleparallel equations follow from the requirement
of the associativity of the symplectic form? That Einstein equations, as
well as other equations for the massless modes of the string, follow from
the closure of a symplectic-like form is the hallmark of the Bowick-Rajeev
geometric quantization approach to string theory [56].)

The metastring offers a new view on the fundamental question of a non-
perturbative formulation of quantum gravity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].
Note that the world-sheet can be made modular in our formulation, with
the doubling of τ and σ, so that X(τ, σ) can be in general viewed as an
infinite dimensional matrix (the matrix indices coming from the Fourier
components of the doubles of τ and σ). Then the corresponding metastring
action should look like∫

Tr[∂τXA∂σXB(ωAB + ηAB)− ∂σXAHAB∂σXB]dτdσ, (30)

where the trace is over the matrix indices. Then we could associate the
natural partonic degrees of freedom with matrix entries. We arrive at a
non-perturbative quantum gravity by replacing the sigma derivative with a
commutator involving one extra X26 (with A = 0, 1, 2, ..., 25)14

∂σXA → [X26,XA]. (31)

This dictionary suggests the following fully interactive and non-perturba-
tive formulation of metastring theory in terms of a (M-theory-like) matrix
model form of the above metastring action (with a, b, c = 0, 1, 2, ..., 25, 26 )∫

Tr(∂τXa[Xb,Xc]ηabc −Hac[Xa,Xb][Xc,Xd]Hbd)dτ, (32)

14That the canonical world-sheet of string theory might become non-commutative in
a deeper, non-perturbative formulation, was suggested in [57].
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where the first term is of a Chern-Simons form and the second of the Yang-
Mills form, and ηabc contains both ωAB and ηAB. This is then the non-
perturbative gravitization of the quantum.15

When discussing a non-commutative phase of string theory it is natural
to invoke the IIB matrix model [61], which describes N D-instantons (and
is by T-duality related to the Matrix model of M-theory [62]). Given our
new viewpoint we can suggest a new covariant non-commutative matrix
model formulation of string theory, as a theory of quantum gravity, by
writing in the large N limit ∂σXC = [X,XC ] (and similarly for ∂τXB)
in terms of commutators of two (one for ∂σXC and one for ∂τXC) extra
N ×N matrix valued chiral X’s. Notice that, in general, we do not need
an overall trace, and so the action can be viewed as a matrix, rendering
the entire non-perturbative formulation as purely quantum in the sense of
the original matrix formulation of quantum mechanics (Born-Jordan and
Born-Heisenberg-Jordan [26]) :

§ncF =
1

4π
[Xa,Xb][Xc,Xd]fabcd, (33)

where instead of 26 bosonic X matrices one would have 28, with super-
symmetry emerging in 10(+2) dimensions from this underlying bosonic
formulation. (This would be a non-commutative matrix model formulation
of F-theory.) By T-duality, the new covariant M-theory matrix model reads
as

§ncM =
1

4π

∫
τ

(
∂τXi[Xj ,Xk]gijk − [Xi,Xj ][Xk,Xl]hijkl

)
, (34)

with 27 bosonic X matrices, with supersymmetry emerging in 11 dimen-
sions16. The relevant information about ωAB, ηAB and HAB is now con-
tained in the new dynamical backgrounds fabcd in F-theory, and gijk and
hijkl in M-theory17.

15In the case of the non-perturbative matrix theory like formulation of the metastring
(and quantum gravity) the matrices emerge from the modular world-sheet, and the fun-
damental commutator from the Poisson bracket with respect to the dual world sheet
coordinates (of the modular/quantum world sheet) - that is, quantum gravity “quan-
tizes” itself, and thus quantum mechanics originates in quantum gravity (see also, [58]).
This formulation should be distinguished from Penrose’s “gravitization of the quantum”
and gravity induced “collapse of the wave function” [59]. Also note some similarity of
the metastring formulation, in its intrinsic non-commutative form, to the most recent
proposal by Penrose regarding “palatial” twistor theory [60].)

16In this approach holography [63] (such as AdS/CFT [64], which can be viewed as a
“quantum Jarzynski equality on the space of geometrized RG flows” [65]) is emergent in
a particular “extensification” of quantum spacetime.

17This offers a new formulation of covariant Matrix theory in the M-theory limit[66],
which is essentially a partonic formulation - strings emerge from partonic constituents
in a certain limit. This new matrix formulation is fundamentally bosonic and thus it is
reminiscent of bosonic M-theory [67]. The relevant backgrounds gijk and hijkl should be
determined by the matrix RG equations. Also, there are lessons here for the new concept
of “gravitization of quantum theory” as well as the idea that dynamical Hilbert spaces
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This matrix like formulation should be understood as a general non-
perturbative formulation of string theory. In this partonic formulation
closed strings are collective excitations, in turn constructed from the prod-
uct of open string fields. The observed classical spacetime emerges as an
“extensification” [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], in a particular limit, out
of the basic building blocks of quantum spacetime. Their remnants can be
found in the low energy bi-local quantum fields, with bi-local (metaparticle)
quanta, to which we now turn.

4.3. Metastrings, quantum fields and metaparticles

What is the effective description of closed strings that incorporates the
above intrinsic non-commutativity? For a closed sting on a circle of radius
R (where the dual radius R̃, is defined as RR̃ = 2λ2 and the respective
winding integers are n and w) this effective description is captured by the
generalized field [7, 8]

Φ(x, x̃) ≡
∑
w

Φw(x)eiwx̃/R̃. (35)

This meshes well with the observation [7, 8] that the string product is
essentially a representation of the Heisenberg group, which suggests that
one should consider the “quantization” map

Φ(x, x̃)→ Φ̂ =
∑
w

Φw(x̂)eiw
ˆ̃x/R̃, (36)

from generalized fields to non-commutative fields.18 Under this map the
T-duality transformation becomes “localized” and is expressed as the ex-
change of x̂ with ˆ̃x. The T-dual expression is given by [7, 8]

Φ̂ =
∑
n

einx̂/RΦn(ˆ̃x− πnR̃) =
∑
n

Φn(ˆ̃x)einx̂/R, (37)

which has a similar form to (36). We see that the non-commutativity of x̂

with ˆ̃x allows one to reabsorb all the shifts in terms of a simple reordering
that exchanges x̂ with ˆ̃x and is the expression of T-duality. The “quantized”
field is simply expanded in terms of modes as

Φ̂ ≡
∑
w,n

einx̂/RΦ(n,w)eiw
ˆ̃x/R̃. (38)

or 2-Hilbert spaces (here represented by matrices) are fundamentally needed in quantum
gravity [68].

18Here, we have chosen a specific operator ordering. Given this ordering, the mapping
is well-defined and consistent with the string product.
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It is useful at this point to generalize the construction to higher dimen-
sional tori. This can be done in a straightforward manner by introducing
the modes KA = (k̃a, ka), generalizing (w/R̃, n/R). The integrality condi-
tion for the lattice Λ of admissible modes K,K′ ∈ Λ reads in this notation
as19 (η ± ω)(λK, λK′) ∈ Z. We now write Φ(K) = 〈K|Φ〉 with the ordering

chosen as 〈K| = 〈0|Û−K, where ÛK ≡ eik·x̂eik̃·
ˆ̃x. This ordering can be seen

to be related to the choice of an O(d, d) frame, where we place the operator
associated with x on the left and the operator associated with the dual
space x̃ on the right. The key point is that this choice of frame is entirely
encoded into the choice of symplectic potential ω and the vertex operator
can be covariantly written in terms of K = (k̃, k) and X = (x, x̃) as

ÛK = e
i
2

(η+ω)(K,X̂)e
i
2

(η−ω)(K,X̂). (39)

Given this notation we can write the string product covariantly as [7, 8]

(Φ ◦Ψ)(K) =
∑

K′+K′′=K

Φ(K′)eiπ(η−ω)(λK′,λK′′)Ψ(K′′). (40)

The non-commutativity of the string product is encoded in terms of a π-
flux due to ω. As it turns out the phase factor is exactly the same as the
cocycle factor ε(K,K′) = eiπ(η−ω)(λK,λK′) that appears in the definition of
the vertex operator product [7, 8].

Thus, quantum gravity, in the guise of metastring theory, produces
at low energy bi-local quantum fields, with intrinsic non-commutatitivity
φ(x, x̃) where [x, x̃] = iλ2. As we have already discussed in section 3, and
as we will see more explicitly in the following section 5, these bi-local fields
are doubled, and their proper formulation requires a double scale renormal-
ization group (RG) found in the context of non-commutative field theory
[32] (which in certain models lead to a finite non-perturbative renormal-

ization). Such doubled bi-local fields (φ(x, x̃) and φ̃(x, x̃)) have metaparti-
cle excitations to be discussed in the next section. One can view such
(meta)fields as low energy manifestations of the metastring field. These
intrinsically non-commutative quantum fields can also be understood to
arise from the representation of the symmetry groups associated with Born
geometry. They should be relevant both in the high energy context (see
the discussion that follows on dark matter and dark energy20) as well as
in condensed matter physics (as new quantum order parameters for highly
entangled and strongly correlated phases of quantum matter).

19In the one dimensional case where K = (w/R̃, n/R) this follows directly from (η +
ω)(λK, λK′) = nw′ and similarly (η − ω)(λK, λK′) = wn′, given that n, n′, w, w′ ∈ Z.

20Even the Standard Model of particle physics (coupled to Einstein’s gravity) exhibits
hidden non-commutative geometry (NCG), as discussed in [22] (for recent reviews and
references, consult [69]), and this implies some unique phenomenological consequences
[70]. The NCG action should be compared to (34), by replacing the commutators with
the NCG Dirac operator.
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To summarize, the above manifestly T-duality covariant formulation
of closed strings (i.e. the metastring) implies intrinsic non-commutativity
of zero-modes. It is thus instructive to formulate a particle-like limit of
the metastring that we call the metaparticle [9]. Given the form for the
symplectic structure of the zero modes derived in section 4. of [7] (equation
(67) of that paper, without the contribution coming from string oscillators),
the action S ≡

∫
dτL of the metaparticle is governed by the following

Lagrangian (implied by the symplectic structure of the closed string) [7, 8]

L = pµ ẋ
µ + p̃µ ˙̃xµ + α′pµ ˙̃pµ − N

2

(
pµp

µ + p̃µp̃
µ −m2

)
+Ñ (pµp̃

µ − µ) , (41)

where N and Ñ are the Lagrange multipliers for the two constraints that
follow from the Hamiltonian (H ≡ ∂σXAHAB∂σXB = 0) and diffeomor-
phism constraints (D ≡ ∂σXAηAB∂σXB = 0) of the metastring [3, 6].

Note that the usual particle limit is obtained, at least classically, by
taking µ → 0 and p̃ → 0. The theory of metaparticles can be viewed
as the theory of the zero modes of the closed string, which fully takes
into account its intrinsic non-commutativity. Given the form of the above
Lagrangian, the metaparticle looks like two particles that are entangled
through a Berry phase-like pµ ˙̃pµ factor. The metaparticle is fundamentally
non-local, and thus it should not be associated with effective local field
theory. In particular, by looking at the metaparticle constraints p2 + p̃2 =
m2 and pp̃ = µ, we note that the momenta p and p̃ can be, in principle,
widely separated. For example, ifm is of the order of the Planck energy, and
µ of the order of one TeV (which could be understood as a characteristic
particle physics scale), then the momentum p can be of the order of the
Planck energy, and the momentum p̃ of the vacuum energy scale. Thus
the metaparticle theory is able to naturally relate widely separated scales,
which transcends the usual reasoning based on Wilsonian effective field
theory (and should be relevant for the naturalness and hierarchy problems).

5. Quantum gravity, metaparticles and dark matter

The theory of metaparticles (the low energy remnants of the metastring,
and as such, the low energy remnants of quantum gravity) can thus be
defined by the following world-line action [9]

S ≡
∫ 1

0
dτ [pẋ+ p̃ ˙̃x+ α′ p ˙̃p− N

2

(
p2 + p̃2 +m2

)
+ Ñ (pp̃− µ)] . (42)

Here the signature (+,−, . . . ,−) and the contraction of indices are implic-
itly assumed. At the classical level, theory of metaparticles is a world-line
theory with the usual reparameterization invariance and two additional
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features [9]. The first new feature of the model is the presence of an addi-
tional local symmetry, which from the string point of view corresponds to
the completion of worldsheet diffeomorphism invariance. From the particle
world-line point of view, this symmetry is associated with an additional
local constraint. The second new feature is the presence of a non-trivial
symplectic form on the metaparticle phase space, also motivated by string
theory [7, 8]. Because of its interpretation as a particle model on Born ge-
ometry, associated with the modular representation of quantum theory, the
space-time on which the metaparticle propagates is ambiguous, with differ-
ent choices related by what in string theory we would call T-duality. The
attractive feature of this model include world-line causality and unitarity,
as well as an explicit mixing of widely separated energy-momentum scales.
The metaparticle propagator follows from the world-line path-integral de-
fined by the above action and it has the following form in momentum space
[9]

G(p, p̃; pi, p̃i) ∼ δ(d)(p− pi)δ(d)(p̃− p̃i)
δ(p · p̃− µ)

p2 + p̃2 +m2 − iε
. (43)

The canonical particle propagator is a highly singular p̃ → 0 (and µ →
0) limit of this expression. This propagator also predicts the following
dispersion relation (in a particular gauge [9]) that can be tested in various
experiments and with various probes

E2
p +

µ2

E2
p

= ~p2 +m2. (44)

This formulation is fully compatible with Lorentz covariance, and is a direct
consequence of the consistency of quantum theory and a minimal length
(and thus Born geometry). In general, for each particle at energy E there
exists a dual particle at energy µ

E . (This is complete analogy for the well-
known prediction of antiparticles in the union of special relativity and quan-
tum theory.)21

We can also discuss the background fields that couple to the meta-
particle quanta. Following the well-known procedure of introducing the
background fields in the case of particles, by shifting the canonical momen-
tum by a gauge field, we might try to extend the gauging procedure to
the metaparticle counterpart. There is a possible ambiguity in this gaug-
ing which depends on which configuration variables one decides to work
with. If one takes (x, x̃) as configuration variables, one obtains a gauging
which could also be motivated by the presence of a ”stringy gauge field” in

21Regarding the phenomenology of quantum gravity (including the phenomenology of
the minimal length) another generic feature presents itself in the context of the quantum
version of the gravitational memory effect [71], which should involve “modular supermo-
mentum”. For some other tests of quantum gravity, and especially intrinsic non-locality
and non-commutativity of quantum spacetime, see [72].
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metastring theory [3]

S →
∫ (

(pµ +Aµ(x, x̃))ẋµ + (p̃µ + Ãµ(x, x̃)) ˙̃xµ

+ 2πα′pµ ˙̃pµ − eH(p, p̃)− ẽD(p, p̃)
)
.

(45)

Indeed, if we introduce canonical momenta

Pµ = pµ +Aµ(x, x̃), P̃µ = p̃µ + Ãµ(x, x̃), (46)

we obtain then

S →
∫ (

Pµẋ
µ + P̃µ ˙̃xµ + 2πα′(Pµ −Aµ(x, x̃))( ˙̃Pµ − d

dt
Ãµ(x, x̃))

−eH(P −A(x, x̃), P̃ − Ã(x, x̃))

−ẽD(P −A(x, x̃), P̃ − Ã(x, x̃))
)
, (47)

but, now, because of the α′ term we see that ˙̃A contains ˙̃x. The background
fields Aµ(x, x̃) and Ãµ(x, x̃) are the natural modular fields in this case.
(Note that this procedure explicitly realizes the general comments made
in section 3 regarding quantum field theory in the modular polarization.)

Thus, the generic prediction here is the existence of a dual field Ã, which
is entangled, with the original A field22.

We expect that the correct field theoretic description of the metaparti-
cle is in terms of the above general non-commutative (modular) field theory
Φ(x, x̃) limit of the metastring [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Such effective
non-commutative field theory is similar in spirit to [32]. Also, we note that
the concept of metaparticles might be argued from the compatibility of the
quantum spacetime that underlies the generic representations of quantum
theory, as discussed in [5], and thus the metaparticle might be as ubiquitous
as the concept of antiparticles which is demanded by the compatibility of
relativity and quantum theory. The metaparticles also provide a natural
route to the problem of dark matter. To lowest (zeroth) order of the expan-
sion in the non-commutative parameter λ the effective action for Standard

22Note that the metaparticle propagator leads to a “Friedel-like” bi-local static po-
tential [73] as well as non-local generalizations of quantum statistics. The traditional
statement concerning quantum gravitational effects is that they are tied to the Planck
scale. However, quantum gravity can be revealed at macroscopic scales via quantum
statistics. In particular, it was argued in [74] that black hole statistics is infinite statis-
tics [75] (which is consistent with non-locality and Lorentz symmetry). Also, in [76] a
statistical argument was used to argue for probable values of the cosmological constant.
More recently, such statistical arguments were used in [77] to analyze the black hole
spin in gravitational wave observations. See [78] for the relevance of infinite statistics for
the fine structure of dark energy. As non-local objects, metaparticles can exhibit such
quantum statistics.
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Model matter Lagrangian (Lm) and their duals (that could be interpreted
as dark matter Lagrangian Ldm) Seff takes the following form (where we
have included the gravitational background as non-dynamical):

Seff = −
∫∫ √

g(x)g̃(x̃)[Lm(A(x, x̃)) + L̃dm(Ã(x, x̃)) + ...]. (48)

Note that after integrating over the “hidden variable parameters x̃ we get an
effective theory of visible and dual (dark) matter in the observed spacetime
x

Seff = −
∫∫ √

g(x)[Lm(A(x)) + L̃dm(Ã(x)) + ...]. (49)

Thus, the metaparticle can be understood as a generic message of string
theory/quantum gravity for low energy physics. Like their visible particle
cousins, dark matter quanta should be detectable through their particular
metaparticle entanglement to visible matter, as indicated by equation (47):

α′Aµ
d
dtÃ

µ (say, for a photon and its dual). This is a Berry-phase like term
that comes from a fully covariant description, and is uniquely different from
the usual effective field theory interaction terms between visible and dark
matter particles.

Such dark matter quanta are correlated to visible matter and have been
discussed in the literature as Modified dark matter [12]. Modified dark mat-
ter (MDM) is, at the moment, a phenomenological model of dark matter,
inspired by gravitational thermodynamics. For an accelerating Universe
with positive cosmological constant Λ, certain phenomenological consider-
ations lead to the emergence of a critical acceleration parameter related to
Λ (essentially that “fundamental acceleration” is just the value of Λ ex-
pressed as acceleration ∼ cH, where H is the Hubble parameter, and thus,
it is of the order of 10−10m/s2). Such a critical acceleration is an effective
phenomenological manifestation of MDM, and it is found in correlations
between dark matter and baryonic matter in galaxy rotation curves. The
resulting MDM mass profiles, which are sensitive to Λ, are consistent with
observational data at both the galactic and cluster scales. In particular,
the same critical acceleration appears both in the galactic and cluster data
fits based on MDM [12]. Furthermore, using some robust qualitative argu-
ments, MDM appears to work well on cosmological scales. If the quanta of
modified dark matter are metaparticles, this may explain why, so far, dark
matter detection experiments have failed to detect dark matter particles.
In particular, the natural model for MDM quanta could be provided by the
metaparticle realizations of the Standard Model particles, associated with
bi-local extensions of all Standard Model fields. Thus the baryon matter
described by the Standard Model fields (the A backgrounds in the above

discussion), would have natural cousins (the Ã backgrounds in the above
discussion) in the dark matter sector, which in turn would be sensitive to
the dark energy modeled by the cosmological constant Λ. This leads us
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naturally to the last topic of this talk - the realization of dark energy in
the metastring approach to quantum gravity.

6. Quantum gravity, metastrings and dark energy

In this section we give a new interpretation [11] of dark energy from this
novel point of view of string theory (and quantum gravity) [1, 2, 3, 4, 5,
6, 7, 8, 9, 10]. Ever since the seminal discovery of dark energy in the late
1990s [79], string theory (viewed as a consistent theory of quantum gravity
and matter) has been attempting to deal with this central ingredient of
fundamental physics. (For the most recent measurements of the Hubble
constant and the associated discrepancies (see [80]). The existence of de
Sitter space (dS) as a solution in string theory (and dark energy in the
observable universe) is still considered an outstanding open question [81],
and the interest in this fundamental issue has been recently reignited in [82].

6.1. Metastring theory and dark energy

We now explain how the generalized geometric formulation of string theory
discussed above provides for an effective description of dark energy that
is consistent with de Sitter spacetime. This is essentially due to the the-
ory’s chirally and non-commutatively doubled realization of the target space
and the stringy effective action on the doubled non-commutative spacetime
(xa, x̃a)

Snc
eff =

∫∫
Tr
√
g(x, x̃)

[
R(x, x̃) + Lm(x, x̃) + . . .

]
, (50)

where the ellipses denote higher-order curvature terms induced by string
theory. (Here we have included the matter Lagrangian Lm as well.) This
Snceff clearly expands into numerous terms with different powers of λ, which
upon x̃-integration and from the x-space vantage point produce various
effective terms. To lowest (zeroth) order of the expansion in the non-
commutative parameter λ of Snc

eff takes the form:

Sd = −
∫∫ √

−g(x)
√
−g̃(x̃)[R(x) + R̃(x̃)], (51)

a result which first was obtained almost three decades ago, effectively ne-
glecting ωAB by assuming that [x̂a, ˆ̃xb] = 0 [83]. In this leading limit, the
x̃-integration in the first term defines the gravitational constant GN , and in
the second term produces a positive cosmological constant constant Λ > 0.
In particular, we are lead to the following low energy effective action valid
at long distances of the observed accelerated universe (focusing on the rel-
evant 3+1-dimensional spacetime X, of the +−−− signature):

Seff =
−1

8πG

∫
X

√
−g
(
Λ + 1

2R+O(R2)
)
, (52)
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with Λ the positive cosmological constant (corresponding to the scale of
10−3 eV) and the O(R2) denote higher order corrections (which are also
required by the sigma model of string theory [84]).

It also follows from this construction that the weakness of gravity is
determined by the size of the canonically conjugate dual space, while the
smallness of the cosmological constant is given by its curvature. (Higher
order terms in λ produce various forms of dark energy [85] and this may
even provide for a way of addressing the recent conflicting measurements of
the Hubble constant [80].) Given this action, we may proceed reinterpret-
ing [83]: integrate out the dual spacetime coordinates, write the effective

action as S̄ ∼ Ṽ
∫
X

√
−g(x)R(x)+..., where Ṽ =

∫
X̃

√
−g̃(x̃), and then relate

the dual spacetime volume to the observed spacetime volume as Ṽ ∼ V −1

(T-duality). This produces an “intensive” effective action [83]

S̄ =

∫
X

√
−g(x)

(
R(x) + Lm(x)

)∫
X

√
−g(x)

+ . . . (53)

By concentrating on the classical description first (we discuss below quan-
tum corrections and the central role of intrinsic non-commutativity in string
theory) we get the following Einstein equations [83]

Rab −
1

2
Rgab + Tab +

1

2
S̄ gab = 0, Tab

def
=
∂Lm
∂gab

− 1

2
Lm gab. (54)

We emphasize that our reinterpretation of [83] does not follow the original
presentation and intention. In particular, we directly relate the intensive
action (54) to the cosmological constant, S̄ ∼ Λ.

Note that this new approach to the question of dark energy (viewed as
a cosmological constant) in quantum gravity is realized in certain stringy-
cosmic-string-like [86] toy models [87], which can be viewed as illustrative
of a generic non-commutative phase of F-theory [88]. In particular, the“see-
saw” formula (54) is directly realized in [87] as MΛ∼M2/MP , where MΛ is
the dark energy scale, MP the Planck scale and M , and intermediate scale,
coming from the matter sector.

6.2. Dark energy and dark matter from metastring theory

Note that in general, to lowest (zeroth) order of the expansion in the non-
commutative parameter λ of Snc

eff takes the following form (that also includes
the matter sector and its dual) [89]:

Sd = −
∫∫ √

g(x)g̃(x̃)[R(x) + R̃(x̃) + Lm(A(x, x̃)) + L̃dm(Ã(x, x̃))], (55)

Here the A fields denote the usual Standard Model fields, and the Ã are
their duals, as predicted by the general formulation of quantum theory that
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is sensitive to the minimal length. Note that after integrating over the dual
spacetime, and after taking into account T-duality, the equation (54) now
reads

S̄ =

∫
X

√
−g(x)

(
R(x) + Lm(x) + L̃dm(x)

)∫
X

√
−g(x)

+ . . . (56)

The proposal here is that the dual sector (as already indicated in the pre-
vious section) should be interpreted as the dark matter sector, which is
correlated to the visible sector via the dark energy sector, as discussed in
[12]. We emphasize the unity of the description of the entire dark sector
based on the properties of the dual spacetime, as predicted by the generic
formulation of string theory (as a quantum theory with a dynamical Born
geometry).

6.3. Dark energy and radiative stability

Let us return to the discussion of the dark energy sector. The above results
from the commutative limit are not stable under loop corrections. which
has been addressed in the recent work of Kaloper and Padilla (called the
sequester mechanism) who also extended these results to loops of arbitrary
order, in the effective field theory [90]. In that context, the effective field
theory expansion has to have another global scale, s, so that the sequester-
ing action is proportional to∫

X

√
−g
[ R

2G
+ s4L(s−2gab) +

Λ

G

]
+ σ

( Λ

s4µ4

)
, (57)

where L denotes the combined Lagrangians for the matter and dark mat-
ter sectors, µ is a mass scale and σ( Λ

s4µ4
) is a global interaction that is

not integrated over [90]. This can be provided by our set up: Start with
bilocal fields φ(x, x̃) [5], and replace the dual labels x̃ and also λ (in a
coarsest approximation) by the global dynamical scale s ∼ ∆x̃∼λ2∆x−1.
Also, normal ordering produces σ. This is an effective realization of the
sequester mechanism in a non-commutative phase of string theory. Fur-
thermore, the intrinsic non-commutativity of the zero modes x and x̃ in
[x, x̃] = iλ2 corrects the zeroth order results in λ in several ways. In par-

ticular, it is natural to ask whether the non-zero ωAB in [X̂A, X̂B] = iωAB

stabilizes the cosmological constant directly on the level of the effective
non-commutative action. The fully non-commutative analysis is intricate,
but for conformally flat metrics, gµν = φ2ηµν , the action (50)–(51) produces
a non-commutative Λφ4 theory, which is a natural non-commutative gen-
eralization of the effective action for conformal metrics

∫
X(∂µφ∂

µφ+ Λ
3 φ

4),

with the non-commutative product depending on λ23. Unlike the commuta-
tive limit of the theory, the beautiful results of Grosse and Wulkenhaar [92]

23See also [91].
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demonstrate the non-perturbative solvability of the above non-commutative
Λφ4 theory, explicitly showing the finite renormalization of Λ in terms of
the bare coupling. At least in this highly simplified, conformal degree limit,
non-commutativity thus can afford a small, radiatively and perhaps even
non-perturbatively stable cosmological constant for the non-commutative
form of the “doubled” effective action.

However, non-commutative field theories have both UV and IR scales
and the effective description is defined by expanding around self-dual fixed
points, and it is organized by keeping both the Wilsonian UV cutoff as
well as the IR scale. This clearly meshes nicely with the UV and IR
aspects of the see-saw formula. Identifying MΛ and MP as the IR and
UV cut-offs, respectively, the double-scale RG flow identifies a self-dual
fixed point [32]. Given that the phase-space formulation [1, 4, 5, 6, 7]
is a T-duality covariant description of string theory, this naturally relates
MP →M2/MP under T-duality. The prediction of our effective stringy
[93] cosmic-string-like models [87] MΛ∼M2/MP then satisfies these con-
ditions, with MP ∼ ε= 1/λ the fundamental energy scale corresponding to
the fundamental length λ, which is consistent with observations provided
M is a TeV scale. We emphasize that the usual spacetime discussion of
string theory is compatible with local effective field theory, which does not
account for the radiative stability of vacuum energy. What we argue is
that this feature of string theory is an artifact of a spacetime description
which is not generic. The generic formulation of string theory is doubled
and generalized-geometric, and intrinsically non-commutative, and it leads
to an effective field theory that is sequestered, and thus, to leading order,
to a radiatively stable vacuum energy. (Including further corrections due to
intrinsic non-commutativity.) Only in a singular limit in which one neglects
the intrinsic non-commutativity and works only within a spacetime section
of the general doubled description does one find the usual effective field
theory, with a spacetime interpretation, and the usual questions regarding
the existence of dS background in string theory [81] (and the related issues
related to holography in the context of asymptotically de Sitter spaces [94]
as well as supersymmetry breaking and the existence of a small and positive
cosmological constant [95])24

7. Conclusion: Quantum gravity and the real world

In this talk we have summarized the recent work on quantum foundations
of string theory and quantum gravity [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In par-
ticular, we have discussed intrinsic non-commutativity in quantum gravity
related to a new concept of quantum spacetime, called modular spacetime

24Note also that Starobinsky inflation [96] may appear as a natural product of the
higher order terms in the λ expansion that, after integrating over x̃ can result in∫
X

√
−g(R + aR2), at the next to leading order in λ. Starobinsky inflation beautifully

fits the observed data [97], and is non-supersymmetric — which is consistent with the
supersymmetry-breaking nature of our discussion.
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that also appears as a habitat for metastring theory and that is deeply
rooted in the foundations of quantum theory (and, especially, in the con-
cept of modular variables that goes back to the work of Weyl, Schwinger
and Aharonov). Note that this concept stems from a quantization of space-
time, and not from quantization of gravitational field/metric. Even the flat
space is quantized according to our approach to quantum gravity. This
allows for superposition and entanglement of spacetimes. Also, this formu-
lation provides for an explicit construction of spacetime quanta or qubits
(the fully “compactified” bosonic string), and a new non-perturbative def-
inition of quantum gravity as “gravitization of the quantum”. Such a fully
dynamical (or “curved”) construction of Born geometry can be approached
from the point of view of “teleparallel gravity” in which one utilizes the at
(zero-curvature) connection and crucially introduces non-zero torsion [55].
This viewpoint is natural for the rigid structure of Born geometry and it
allows for “curving” of T-duality. In some sense, by going from our new
formulation of quantum mechanics in terms of modular, or quantum space-
time, with hidden but fixed Born geometry, and its application to quantum
field theory, to an explicit formulation of quantum gravity that involves
dynamical Born geometry, as is the case in metastring theory, we are re-
tracing (in a purely quantum context) the line of development that led
from special relativity (and fixed Minkowski geometry) and its application
to classical relativistic field theory, to general theory of relativity with a
dynamical spacetime geometry25.

The underlying physical principle here is relative locality - different ob-
servers probe different spacetimes; these different spacetimes are sections
of a quantum (modular) spacetime - implying, in general, a dynamical mo-
mentum space26. According to relative locality, quantum mechanics follows
from non-locality that is consistent with causality. In particular, it follows
from the existence of fundamental length and fundamental time that are
consistent with Lorentz symmetry. The geometry of quantum non-locality
is Born geometry. In particular, if the relevant physics lives on a spacetime
lattice, the full set of quantum numbers involves the lattice and its dual.
This leads to unitary (modular) variables, and modular spacetime (space-
time and its dual being tied via intrinsic non-commutativity that involves
the fundamental length/time.) Then it follows that quantum gravity is
dynamical Born geometry found in the metastring approach to quantum
gravity. The effective description is given in terms of quantum field the-
ory with intrinsic non-commutativity - with metaparticle excitations. The
renormalization group has both UV and IR scales - leading to a double

25There is an interesting connection here to quantum logic [98], “Logic being to quan-
tum theory what geometry is to gravity” (R. Sorkin). Quantum gravity then appears as
“warped logic” (D. Finkelstein), and as “third relativity” (J. A. Wheeler); first relativ-
ity being represented as Galilean, special and general relativity and second relativity as
quantum theory.

26Momentum space geometry is relevant for the recent progress in scattering amplitudes
[99].
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RG, with direct relevance for the recent discussion of the infrared limit of
QFT [71]. This new understanding of quantum field theory with manifest
quantum non-locality is relevant both for particle physics and also for con-
densed matter physics. In particular, some of the implications for the real
world are dark energy as curvature of the dual spacetime [11], and dark
matter correlated to visible matter and dark energy [12] and represented
by metaparticles [10].

Finally, we comment on the problem of vacuum selection. Born reci-
procity [16] demands a symmetric dynamical geometric structures in space-
time and energy momentum space. Thus matter and spacetime are put on
equal footing (which reminiscent of with some intuitions from F-theory).
The question is whether Born reciprocity can be used as a criterion for
vacuum selection in quantum gravity, which selects “maximally symmet-
ric solutions” both in spacetime (de Sitter space) and in the matter sector
(Standard Model and its dual, describing the dark matter sector). Then the
apparent robustness of the “genetic code” (masses and couplings) of particle
physics (see, for example, [100]) might be the consequence of an attractor
mechanism that makes the observed cosmology and particle physics “uni-
versal” (this is similar to what happens in universal biology of the “genetic
code” based on horizontal gene transfer [101]). The idea here is that a
universal “genetic code” for particle physics (that is, the particle masses
and couplings, as well as cosmological parameters) can be obtained via a
horizontal information transfer mechanism that apparently leads to a uni-
versal genetic code. In the case of universal cosmology, such horizontal
information transfer can be provided by an interaction between spacetime
quanta via the gravitization of the quantum, leading to a “maximally sym-
metric” attractor solution. It would be fascinated to explore this idea more
concretely in the future.
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