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Abstract

We consider the attractor behaviour of the tachyon field dynamics in the holo-
graphic inflation cosmology. Our focus is on the model with exponential potential.
The solutions of the dynamical equation in the phase-space are examined and we
show they correspond to a dynamical attractor.

1. Introduction

Cosmological inflation is the leading theory for resolving some of the prob-
lems in the standard Big Bang model. Inflation predicts a short epoch
during which the universe has suddenly expanded in size. The generated
quantum fluctuations provided the seeds of cosmic microwave background
anisotropy and the large scale structure [1].

One of the main features of the inflationary models, as well as one of the
reasons to introduce inflation theory, is the assumption that the evolution of
the universe, which can be described by a scalar field, is independent of the
initial conditions. This property is regarded to the notion of cosmological
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attractors: dynamical conditions under which the evolving scalar fields
approach a certain kind of behavior without fine tuning [2].

We analyze the properties of the attractor solutions in a model of infla-
tion with tachyonic field in the framework of holographic cosmology. The
use of the tachyon field in the inflation models is inspired by string the-
ory [3]. We consider dynamics of the holographic model on a D3-brane
located at the holographic boundary of an asymptotic ADS5 bulk. Dynam-
ics can be describe by effective four-dimensional Einstein equations on the
holographic boundary [4].

2. Tachyon dynamics in the holographic braneworld

Under assumption that the holographic braneworld is spatially flat, the line
element is of the form

ds2 = gµνdx
µdxν = dt2 − a2(t)(dr2 + r2dΩ2). (1)

In this case, following the procedure given in the ref. [5], the holographic
Friedmann equations can be derived from effective four-dimensional Ein-
stein equations

h2 − 1

4
h4 =

κ2

3
`4ρ, (2)

ḣ

(
1− 1

2
h2
)

= −κ
2

2
`3(p+ ρ), (3)

where ` is the AdS curvature radius and κ2 = 8πGN/`
2 is the fundamental

dimensionless coupling. The overdot denotes derivative with respect to a
dimensionless time variable τ = t/`, while a dimensionless expansion rate
is h = ȧ/a [5]. The time evolution of the energy density ρ and the pressure
p of the tachyon field θ is governed by the Lagrangian of the Dirac-Born-
Infeld type [6]

L = −`−4V (θ/`)
√

1− gµνθ,µθ,ν , (4)

i.e.

ρ =
`−4V√
1− θ̇2

, p = −`−4V
√

1− θ̇2. (5)

Here, V denotes a tachyon potential. The field θ is already redefined, so
that its dimension is l. The energy conservation equation

ρ̇+ 3
h

l
(ρ+ p) = 0, (6)

gives a second order differential equation for θ(τ)

θ̈

1− θ̇2
+ 3

h

l
θ̇ +

V,θ
V

= 0, (7)
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where ,θ denotes derivative with respect to theta. The equation (2) gives
two solutions, but in the low density limit (κ2`4ρ� 1) only solution [5, 6]

h2 = 2

1−

√
1− κ2

3
`4ρ

 , (8)

is reducible to the Friedmann equation in the standard cosmology. It follows
that the physical range of the expansion rate is 0 ≤ h2 ≤ 2.

In the slow-role regime, when the field changes slowly under time due
to the conditions [5]

θ̇2 � 1, |θ̈| � 3
h

`
θ̇, (9)

and while θ̇ can be approximated by

θ̇ ' − `V,θ
3hV

, (10)

the equation (8) takes the form

h2 ' 2

1−

√
1− κ2

3
V

 . (11)

There are several ways to define the slow-roll parameters to ensure that
the field changes slowly in time. We use the definition for the horizon-flow
parameters εj given in the ref. [7]

ε0 =
h∗
h
, εi+1 =

d ln |εi|
dN

, i ≥ 0, (12)

where h∗ is the Hubble rate at some chosen time and N is the number of
e-folds. During inflation we have ε1 < 1, ε2 < 1 and inflation ends once
either of the two parameters exceeds unity.

3. Attractor behavior - general consideration

To analyze the dynamics of the tachyon field it is useful to remind on the
properties of an attractor behavior.

The definition of an attractor in the cosmological context is argued in
ref. [2]. In cosmology, the concept of an attractor solution is introduced
slightly different and less rigorous than in the mathematical literature [8].
Most often the term attractor is related to the specific properties of the
depicted solutions in the phase space. Although the properties of the at-
tractors depend on the choice of coordinates, the phase space we are going
to work with will be represented as (θ, θ̇) plane, as it is usually done.
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Regarding to the ref. [9] the attractor solution can be found demanding

dθ̇

dθ
' 0. (13)

The equation (7) can be rewritten in the form

dθ̇

dθ
' −

(
3
h

l
θ̇ +

V,θ
V

)
1− θ̇2

θ̇
, (14)

where dθ̇
dθ is equal to zero if the expression in the parenthesis is equal to zero.

This requirement leads to the approximate expression (10) and has been
fulfilled only during the slow-roll regime. This is consistent with the well
known fact that the slow-roll approximation provides an attractor solution
ref. [10].

4. Attractor solutions

In a similar manner, as it was proposed in the ref. [11], we demonstrate
the attractor behaviour of our model. We consider the expansion rate as
a function of the inflaton field h = h(θ). Using equations (2) and (3), the
time derivative of the tachyon field, in terms of the dimensionless expansion
rate and its first derivative with respect to tachyon field, is given by

θ̇ = −2

3
`

1− 1
2h

2

h2 − 1
4h

4
h,θ , (15)

This allows us to rewrite the equation (2) as the first order ordinary differ-
ential equations

9(h2 − 1

4
h4)2 − 4`2(1− 1

2
h2)2h,2θ = κ4V 2. (16)

The equation (16) is of the Hamilton-Jacobi type equation. Suppose that
h0(θ) is its solution in the case of a general potential, which is able to
support inflation. In order to examine the attractor behavior of θ, we
consider the expansion rate h. Taking the perturbation δh(θ) of the solution
h0(θ) for the expansion rate

h(θ) = h0(θ) + δh(θ), (17)

and substituting (17) in the equation (16), keeping only the terms up to
the first order of the perturbation, we find

9

4
h3

4− h2

2− h2
dθ

h,θ
=
dδh

δh
. (18)
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Integrating the above expression, using the equation (15) to expres h,θ, and

the equation (10) for θ̇, one gets

δh(θ) = δh(θi)e
−3N , (19)

where the number of e-folds N is defined as in the reference [5]

N ≡ 1

`

∫ tf

ti

hdt ' −3

∫ θf

θi

h2V

`2V,θ
dθ. (20)

The subscripts i and f are regarded to the beginning and to the end of
inflation, respectively. To solve the horizon and the flatness problem, we
need about 50-60 e-folds. The perturbation δh decreases as we approach the
end of inflation, and the model possesses the attractor behavior. Therefore,
the all solutions quickly approach each other and they are independent of
initial conditions, as we demonstrate in the following section.

5. Attractor behavior with exponential potential

We consider the following exponential potential

V = e−ω|θ|/`, (21)

where ω is a dimensionless parameter. This potential is one of the most
frequently used for the tachyon systems [12]. The value of the parameter
ω is determined by the initial value of expansion rate hi and the number
of e-folds N . From the equation (20), and using the condition ε2f = 1 for
the end of inflation, one gets an approximate expression [5]

ω2 '
12

[
h2i
2 + ln

(
1− h2i

4

)]
N + 1

. (22)

The initial value of the field can be estimated from (11), giving [5]

θi ' −
1

ω
ln

[
3

κ2

(
1− (1− h2i

2
)2
)]

. (23)

To examine behavior of the inflationary solution in the phase-space we
need to find the solution of the equation (14), which for the exponential
potential takes the form

dθ̇

dθ
' −1

l

(
3
h

l
θ̇ − ω

)
1− θ̇2

θ̇
. (24)
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The equation (24) is solved numerically for a variety of arbitrary chosen
initial values. Using equations (10) and (11) one can find the relation

between θ and θ̇ which is valid in the slow-roll regime

θ̇ ' ω√
18(1−

√
1− κ2

3 e
−ω|θ|/` )

. (25)

As it is shown in the section 3., slow roll approximation is necessary in order
to provide a solution that is an attractor solution. Although the equation
(14) is independent of κ, we need to choose a numerical value for κ in order

to set the initial value for θ̇, and we choose κ = 1.
In our model inflation ends when ε2f = 1, and the inflaton field reaches

the value [5]

θf =
`

ω
ln
κ2

ω2
. (26)

The obtained diagram, in (θ, θ̇) plane, is presented in the (Fig. 1).
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Figure 1: θ̇ versus θ diagram, calculeted numerically for several initial
values of θ̇ and fixed parameter ω = 0.164. The solid line represents the
solution obtained in respect to the initial values constrained by the equation
(25).

For many different choices of the initial conditions the phase space tra-
jectories converge at late time and there exists a curve that attracts most
of the trajectories. According to the criteria given in the reference [2] the
solution in the model behaves as an attractor.
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6. Conclusions

In this paper, we consider the inflation model with a tachyon field in holo-
graphic cosmology and it is shown that the solutions for the tachyon field
θ have properties of the an attractor. It is shown that the use of the
Hamilton-Jacobi equation (16) is very effective in this consideration. Also,
in the case of the exponential potential a numerical solution of the dynam-
ical equation is found for a wide interval of the initial values and plotted in
a the phase space (θ, θ̇). The numerical results fully confirm the existence
of the attractor behaviour.

It is an interesting task to examine and demonstrate the attractor be-
haviour for other tachyon-type potentials, and to check if any possible vi-
olation of the attractor behaviour may appear.
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