
Highly entangled quantum spin chains∗

Fumihiko Sugino†

Center for Theoretical Physics of the Universe,
Institute for Basic Science, Expo-ro 55,

Yuseong-gu, Daejeon 34126, Rebublic of Korea

Abstract

We mainly discuss a highly entangled quantum spin chain with local interac-
tions, called as (colored) Motzkin spin chain, in which entanglement entropy for its
ground state grows as a square root of the volume. Since this is beyond logarithmic
behavior in the ordinary critical systems, it is important to study such a model
to reveal novel features of quantum entanglement. We explain how the model
yields the extraordinary growth of the entanglement entropy, and then compute
the Rényi entropy for the same model. As a result, we find a new phase transition
with respect to the Rényi parameter, which has been never seen in any other spin
chain studied so far.
PACS: 02.30.Ik, 03.65.Ud, 03.67.Bg, 05.30.-d, 12.40.Ee

1. Introduction

Quantum entanglement is one of the most surprising features of quantum
theory, and gives correlations that cannot be explained in classical mechan-
ics. This comes from the fact that superpositions of states are possible in
quantum mechanics. As a measure of the entanglement, entanglement en-
tropy (EE) is defined as follows. First, we divide a total system S into a
subsystem A and the rest B. Starting with the density matrix of the total
system ρ, we obtain the reduced density matrix of A by tracing out ρ by
the Hilbert space belonging to B: ρA = TrB ρ. Then, the EE is defined as
the von Neumann entropy of ρA:

SA = −TrA ρA ln ρA. (1)

In case that the system S has a unique ground state, its density matrix is a
pure state (ρ = |GS〉〈GS|) and its von Neumann entropy is zero. However,
the reduced density matrix ρA can become a mixed state and the EE can
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be nonzero. The mixed state reflects information of interactions between A
and B, some of which is measured by the EE. Thus, different behavior of
the EE implies difference of the structure of the ground state, i.e., different
phase structure, and the EE can be regarded as a new order parameter of
the system.

Let us consider ground states of quantum many-body systems with lo-
cal interactions. Typically, the EE of such systems grows proportionally
to the area of the boundary of A and B (“Area law”) [1]. For systems
with gap, it is naturally understood since correlation length is finite and
interactions contributing to the EE localize around the boundary. A math-
ematical proof of the area law has been given in gapped systems in one
spatial dimension [2]. Actually, in conformal field theory (CFT) in (1 + 1)
dimensions, which is gapless, logarithmic violation of the area law has been
observed [3, 4, 5], where the EE grows as lnL with L length scale of the
subsystem A 1.

For gapless systems in general spatial dimensions (D), it had been be-
lieved that the EE violates the area law (SA = O(LD−1)) by at most
logarithmic corrections (SA = O(LD−1 lnL)). Recently, Movassagh and
Shor has constructed a spin chain model that gives a counterexample for
the belief. In their model, called as colored Motzkin spin chain, the EE vi-
olates the area law by a square-root correction (SA = O(

√
L)) that is much

larger than the logarithmic behavior [6]. Since this behavior is beyond the
behavior for the ordinary critical systems, they called it as supercritical
entanglement.

In this article, we explain the spin chain given by Movassagh and Shor,
and discuss how such a large correction arises in the EE. Then, we compute
the Rényi entropy of the spin chain and find a new phase transition that
has not been observed in any other spin chain.

This paper is organized as follows. We introduce the Motzkin spin
chain in section 2. and its colored version in section 3. with computing the
EE for each case. After introducing the Rényi entropy in section 4., we
compute the Rényi entropy for colorless and colored Motzkin spin chains in
sections 5. and 6.. Section 7. is devoted to a summary and possible future
directions.

2. Motzkin spin chain

Let us consider a quantum spin chain defined on sites of the one-dimensional
lattice with length 2n: {1, 2, · · · , 2n}. The local Hilbert space at each site
consists of spin-1 degrees of freedom, up |u〉, zero |0〉 and down |d〉, which
we can correspond to up, flat and down steps, respectively. Then, each
spin configuration corresponds to a length 2n walk on the two-dimensional
(x, y)-plane. Fig. 1 shows an example for length 2n = 6.

1In one spatial dimension, the boundary of A and B is point(s), and the area law
means that the EE asymptotically approaches to some finite constant.
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Figure 1: An example of spin configurations for length 6, and its corre-
sponding walk. Indices of the state vectors indicate sites.

The Motzkin spin chain (or colorless Motzkin spin chain) is defined by
the Hamiltonian [7]

HM =
2n−1∑
j=1

{
|D〉j,j+1〈D|+ |U〉j,j+1〈U |+ |F 〉j,j+1〈F |

}
+ |d〉1〈d|+ |u〉2n〈u|

(2)
with

|D〉 =
1√
2

(|0〉|d〉 − |d〉|0〉) , |U〉 =
1√
2

(|0〉|u〉 − |u〉|0〉) ,

|F 〉 =
1√
2

(|0〉|0〉 − |u〉|d〉) . (3)

In (2), three terms inside of the sum are projection operators acting to
adjacent sites j and j + 1 as indices indicate, whereas the last two terms
are boundary terms acting to sites 1 and 2n. The Hamiltonian consists of a
sum of local projection operators. Since projection operators are positive-
semi definite operators, the Hamiltonian is also. Therefore, if we find a
zero-energy eigenstate for (2), it must be a ground state of the system.
Such a ground state is a zero-eigenstate of each local projection operator
in (2). Let us express such a zero-energy ground state in terms of walks.
First, the boundary terms forbid a down (up) step at the left (right) edge.
Second, the projection operators with respect to the three states (3) mean
that a sum of walks corresponding to the ground state should be invariant
under the three moves at any adjacent two steps:

∼ , ∼ ,

∼ . (4)

From these, it turns out that the zero-energy ground state is unique and
corresponds to random walks from (0, 0) to (2n, 0) without entering the
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region y < 0. Such a kind of random walks is called as Motzkin walk,
which is the origin of the name of the spin chain. For example, the ground
state for length 2n = 4 is

|P4〉 =
1√
9

[|0000〉+ |ud00〉+ |0ud0〉+ |00ud〉

+|u0d0〉+ |0u0d〉+ |u00d〉
+|udud〉+ |uudd〉] (5)

and the corresponding Motzkin walk is given as

+ + +

+ + +

+ + . (6)

We pick a left-half of the system {1, 2, · · · , n} as a subsystem A and
compute the EE. The ground state is decomposed as a linear combination
of the tensor product of a state belonging to A and a state belonging to
the rest B = {n+ 1, · · · , 2n} (Schmidt decomposition):

|P2n〉 =
n∑
h=1

√
p
(h)
n,n

∣∣∣P (0→h)
n

〉
⊗
∣∣∣P (h→0)
n

〉
, (7)

where
∣∣∣P (0→h)
n

〉
is a sum of states, corresponding to length-n walks from

(0, 0) to (n, h) and belonging to A, while
∣∣∣P (h→0)
n

〉
belongs to B. By using

the number of the walks of |P2n〉 denoted by M2n and that of
∣∣∣P (0→h)
n

〉
by

M
(h)
n , p

(h)
n,n in the coefficient is expressed as p

(h)
n,n =

(
M

(h)
n

)2
/M2n. From

combinatorics, the numbers are given by

M2n =
n∑
k=0

1

k + 1

(
2k
k

)(
2n
2k

)
,

M (h)
n =

n−h∑
r=0

1 + (−1)n−r+h

2

(
n
r

)
h+ 1

n−r+h
2 + 1

(
n− r
n−r+h

2

)
, (8)

and p
(h)
n,n asymptotically behaves as

p(h)n,n ∼
3
√

6√
π

(h+ 1)2

n3/2
e−

3
2

(h+1)2

n ×
[
1 +O(n−1)

]
(n→∞). (9)
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From the density matrix of the ground state ρ = |P2n〉〈P2n|, the EE is
obtained as

SA = −
n∑
h=0

p(h)n,n ln p(h)n,n, (10)

whose asymptotic form becomes

SA ∼
1

2
lnn+

1

2
ln

2π

3
+ γ − 1

2
(11)

with γ being the Euler constant. We suppressed terms vanishing as n→∞.
Although (11) violates the area law logarithmically, the system cannot

be described by relativistic CFT. Another investigation shows that the gap
of the system behaves like O(n−z) with z ≥ 2, whereas the gap of the
relativistic CFT scales as O(n−1) [6]. We will present another evidence for
this issue in computing Rényi entropy.

3. Colored Motzkin spin chain

In this section, we discuss a spin chain obtained by adding color degrees
of freedom to the up and down spins in the model in the previous section.
Let us add s kinds of color degrees of freedom in the up and down spins,
namely

∣∣uk〉 and
∣∣dk〉 (k = 1, · · · , s). As we will see, this contributes to the

square-root violation of the area law.
The Hamiltonian is defined as a sum of projection operators:

HcM, s =
2n−1∑
j=1

s∑
k=1

{∣∣∣Dk
〉
j,j+1

〈
Dk
∣∣∣+
∣∣∣Uk〉

j,j+1

〈
Uk
∣∣∣+
∣∣∣F k〉

j,j+1
〈F |
}

+

2n−1∑
j=1

Πcross
j,j+1 +

s∑
k=1

{∣∣∣dk〉
1

〈
dk
∣∣∣+
∣∣∣uk〉

2n

〈
uk
∣∣∣} , (12)

where
∣∣Dk

〉
,
∣∣Uk〉 and

∣∣F k〉 are given in (3) with d and u replaced by dk

and uk, respectively. The term

Πcross
j,j+1 ≡

∑
k 6=k′

∣∣∣uk〉
j

∣∣∣dk′〉
j+1

〈
uk
∣∣∣
j

〈
dk
′
∣∣∣
j+1

(13)

is a peculiar to the colored model, which realizes color-matched up-down
pairs in zero-energy states.

From similar argument to the previous section, we can see that (12) has
a unique zero-energy eigenstate corresponding to colored Motzkin walk.
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For length 2n = 4 case, the ground state and the corresponding colored
Motzkin walk are

|P4, s〉=
1√

1 + 6s+ 2s2

[
|0000〉+

s∑
k=1

{∣∣∣ukdk00
〉

+
∣∣∣0ukdk0〉+

∣∣∣00ukdk
〉

+
∣∣∣uk0dk0〉+

∣∣∣0uk0dk〉+
∣∣∣uk00dk

〉}
+

s∑
k,k′=1

{∣∣∣ukdkuk′dk′〉+
∣∣∣ukuk′dk′dk〉}] (14)

and

+
k k

+
k k

+
k k

+
k k

+
k k

+
k k

+
k k k′ k′

+
k
k′ k′

k
. (15)

The number in the normalization 1 + 6s + 2s2 gives the number of the
colored Motzkin walks of length 4.

In order to compute the EE of the half chain, let us consider the Schmidt
decomposition of the ground state |P2n, s〉. We divide any path of the col-
ored Motzkin walks from (0, 0) to (2n, 0) into two length-n paths, cor-
responding to the subsystems A and B. For the midpoint (n, h) in the
division, the left-half path from (0, 0) to (n, h) has colors of h up-steps un-
matched inside A, which should be matched to colors of h down steps in
the right-half path from (n, h) to (2n, 0). We show an example of length
2n = 8 and h = 2 in Fig. 2.

κm denotes a color of the unmatched up-step from height m − 1 to m in
the left-half. By expressing the left-half (right-half) path with unmatched

colors κ1, · · · , κh as P
(0→h)
n, s ({κ}) (P

(h→0)
n, s ({κ})), the Schmidt decomposition

has the form

|P2n, s〉 =
n∑
h=0

s∑
κ1=1

· · ·
s∑

κh=1

√
p
(h)
n,n, s

∣∣∣P (0→h)
n, s ({κ})

〉
⊗
∣∣∣P (h→0)
n, s ({κ})

〉
. (16)

The number of paths in the colored Motzkin walks of length 2n is de-

noted by M2n, s, and the number of P
(0→h)
n, s ({κ}) by M̃

(h)
n, s. Then, p

(h)
n,n, s =
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Figure 2: Division of a path with length 2n = 8 and h = 2. The colors k
and k′ are matched inside A and B respectively, whereas the colors κ1 and
κ2 are matched across the boundary.

(
M̃

(h)
n, s

)2
/M2n, s. The numbers are obtained by combinatorics as

M2n, s =
n∑
k=0

1

k + 1

(
2k
k

)(
2n
2k

)
sk,

M (h)
n, s =

n−h∑
r=0

1 + (−1)n−r+h

2

(
n
r

)
h+ 1

n−r+h
2 + 1

(
n− r
n−r+h

2

)
s
n−r+h

2 .

(17)

Assuming n, r, n − r ± h � 1, we evaluate the sums by the saddle point
method, and obtain

p(h)n,n, s ∼
s−h
√
π s1/4

(2n)3/2

(2
√
s+ 1)2n+

3
2

n2n+1

r2n+3
0

(h+ 1)2

[4sn2 − (4s− 1)h2]1/2

×
(
n− r0 − h
n− r0 + h

)h+1

×
[
1 +O(n−1)

]
, (18)

where the saddle point value of r is r0 +O(n0) with

r0 ≡
n

4s− 1

[
−1 +

√
4s− (4s− 1)

h2

n2

]
. (19)

When, h ≤ O(n1/2), (18) reduces to

p(h)n,n, s ∼
√

2 s−h
√
π (σn)3/2

(h+ 1)2e−
(h+1)2

2σn ×
[
1 +O(n−1)

]
(20)
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with σ =
√
s/(2
√
s + 1). For the density matrix of the ground state ρ =

|P2n, s〉〈P2n, s|, the EE is obtained as

SA = −
n∑
h=0

shp(h)n,n, s ln p(h)n,n, s, (21)

where the factor sh arises from the sums of κ’s in (16). Here, since h ≤
O(n1/2) dominantly contributes to the sum, we may use (20) in evaluating
the EE. The result is

SA ∼ (2 ln s)

√
2σn

π
+

1

2
lnn+

1

2
ln(2πσ) + γ − 1

2
− ln s (22)

up to terms vanishing as n → ∞. The first term grows as O(
√
n) and

provides a new violation of the area law much greater than the logarithm
that have ever seen. This reproduces the result in the colorless case (11)
in the limit s → 1. We can see that the leading term of SA comes from

the expectation value of h ln s under the weight shp
(h)
n,n, s ∼ e−

(h+1)2

2σn . Due
to the Gaussian distribution, the expectation value scales as

√
n ln s.

For spin-1/2 case, a model exhibiting the same square-root violation
has been constructed [8, 9]. By introducing a parameter that controls the
randomness of the walks, models realizing the extensive EE that scales as
O(n) have also been discovered [10, 11, 12].

4. Rényi entropy

Rényi entropy is a genralization of the EE and defined by [13]

SA,α =
1

1− α
ln TrA ρ

α
A, (23)

where α is a positive number not equal to 1. It is easy to see that (23)
reduces to (1) in the limit α→ 1. The Rényi entropy has further importance
than the EE, because the whole spectrum (entanglement spectrum) of ρA
or equivalently of the entanglement Hamiltonian

Hent,A = − ln ρA (24)

can be obtained once the Rényi entropy is known as a function of α.
SA,α (0 < α < 1) for gapped systems in one space-dimension is proven

to exhibit the area law [14]. For CFT in (1 + 1) dimensions, the Rényi
entropy behaves as [3, 15]

SA,α ∼
c

6

(
1 +

1

α

)
lnL, (25)
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where c is the central charge of the CFT, and L is a length scale of the
subsystem A.

In terms of (24), the Rényi entropy takes a form analogous to the “ther-
mal free energy” with the “temperature” 1/α:

SA,α =
1

1− α
ln TrA e

−αHent, A . (26)

In the next section, we compute the Rényi entropy in the colorless
and colored Motzkin spin chains, and observe a new phase transition with
respect to the parameter α [16].

5. Rényi entropy of colorless Motzkin spin chain

First, let us compute asymptotic behavor of the Rényi entropy (23) as
n→∞ for colorless case s = 1. Since ρA is diagonal, (23) becomes

SA,α =
1

1− α
ln

n∑
h=0

(
p(h)n,n

)α
(27)

with p
(h)
n,n given in (9). The sum

∑n
h=0

(
p
(h)
n,n

)α
can be evaluated by con-

verting to an integral. Elementary calculations lead to

SA., α =
1

2
lnn+

1

1− α
ln Γ

(
α+

1

2

)
− 1

2(1− α)

{
(1 + 2α) lnα+ α ln

π

24
+ ln 6

}
(28)

up to terms vanishing as n → ∞. This logarithmically grows as the CFT
case (25), but the dependence of α is different, which shows that the col-
orless Motzkin spin chain cannot be described by CFT. The result is con-
sistent with the computation in [17].

6. Rényi entropy of colored Motzkin spin chain

Next, we consider the colored case (s > 1). What we compute is the
asymptotic behavior of

SA,α =
1

1− α
ln

n∑
h=0

(
shp(h)n,n, s

)α
(29)

with (20). Note that the summand has a factor s(1−α)h. Due to this, the
summand exponentially grows as h increases for 0 < α < 1, whereas it
exponentially decays for α > 1.
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6.1. 0 < α < 1 case

For 0 < α < 1, we find a saddle point value of the sum with (18) as

h∗ = n
s1/(2α) − s1−1/(2α)

s1/(2α) + s1−1/(2α) + 1
+O(n0). (30)

Since h∗ = O(n), here we cannot reduce (18) to (20). Saddle point analysis
around (30) provides the result

SA,α = n
2α

1− α
ln
[
σ
(
s

1−α
2α + s−

1−α
2α + s−1/2

)]
+

1 + α

2(1− α)
lnn (31)

up to O(n0) terms. The leading term linearly grows with respect to the
volume n. We should note that the limit α→ 1 or s→ 1 does not commute
with the large-n limit. When α→ 1 or s→ 1, the leading term of O(n) in
(30) vanishes, and thus the saddle point analysis cannot be trusted.

6.2. α > 1 case

For α > 1, it can be seen that h . 1/((α − 1) ln s) = O(n0) dominantly
contributes to the sum (29). Using (20), we end up with

SA,α =
3α

2(α− 1)
lnn+O(n0). (32)

This grows logarithmically. Again, the limit α → 1 or s → 1 does not
commute with the n→∞ limit.

6.3. Phase transition

We saw that SA,α grow as as O(n) for 0 < α < 1, while as O(lnn) for
α > 1. There is nonanalyticity at α = 1. As discussed in section 4., α can
be regarded as the inverse temperature. From this point of view, our result
means a phase transition takes place at the inverse temperature α = 1. The
transition point itself form a phase, where the EE behaves as a square-root
of the volume. We summarize the result in Fig. 3.

7. Conclusions

We have mainly discussed quantum entanglement of the ground state for
the Motzkin spin chain and its colored version, the latter of which signifi-
cantly violates the area law by the square-root correction in spite of local
interactions of the model. Then, we proceed with the computation of the
Rényi entropy of the same model, and find a phase transition at the pa-
rameter α = 1. This is a new phase transition never seen in any other spin
chain studied so far.

Following future directions seem to be worth pursuing:
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1/α10

SA,α: O(lnn) O(
√
n) O(n)

h: O(n0) O(
√
n) O(n)

Figure 3: Phase diagram along the “temperature” 1/α. In high tempera-
ture, the Rényi entropy linearly grow with respect to n, to which h = O(n)
dominantly contributes. On the other hand, in low temperature, the Rényi
entropy logarithmically grows, to which h = O(n0) mainly contributes. Fi-
nally, the third phase appears at the transition point α = 1, where main
contribution comes from h = O(

√
n) to give the EE growing as

√
n.

• The behavior of the EE is beyond the logarithmic growth at the or-
dinary critical point. So, it is interesting to investigate if the colored
Motzkin spin chain is described as any quantum field theory. If so,
it would have exotic properties that are not seen in the conventional
quantum field theory.

• We also constructed models exhibiting the same square-root violation
of the EE by using symmetric inverse semigroups [18, 19]. It would
be interesting to compute the Rényi entropy for the systems.

• If we construct a higher-dimensional analog of the model, its ground
state would be expressed as a sum of higher-dimensional objects,
namely a sum of surfaces for a two-dimensional model. It could have
some connection to string theory.

• From the viewpoint of gauge/gravity duality or holography, it would
be interesting to interpret the square-root violation of the EE as a
geodesic of some bulk space geometry. Since the same square-root
scaling has been discovered for a geodesic in a two-dimensional fluc-
tuating surface, i.e., two-dimensional quantum gravity [20, 21], This
direction might provide a new formulation of quantum gravity.
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