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Abstract

The information criteria are widely used to select the simple and proper specifi-
cation of a model. In cosmology these criteria are used to select among the models
with dark energy. These models are divided into two groups: the models with
substantive dark energy and the models with a modified Friedmann equation. We
show the advantages of using the consistent AIC over AIC in the problem con-
sidered. The cosmological model with cosmological constant – LCDM model – is
favoured in the light of this criterion.

1. Introduction

Two trends are present, principally, in modern cosmology [1]. The first
trend is called theoretical where different models are elaborated to explain
observational facts, like acceleration, nature of dark matter and dark mat-
ter. All these attempts can be divided into three groups. First, we are look-
ing for dark energy as a special form of substance (particles, fields). Second,
we claim that theory of gravity which constitutes explanatory background
should be modified. Third, we can postulate the violation of the cosmolog-
ical principle as a source of acceleration (non-homogenous universe).
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In the second trend, observational, we use observational methods to
obtain astronomical data in order to estimate parameters of the theoretical
models and probe theoretical hypothesis.

If we confront both trends, then we obtain many theoretical admissi-
ble models, which are in good agreement with observational data. This
cognitive situation is called the degeneration problem. This degeneration
problem has many faces in cosmology.

The same terms in model equations can mimic different effects. Objects
of different ontologies produce the same term in the equations. For example,
dark degeneracy means inability to resolve whether nature of dark energy
is dynamical or is an effect of interaction between dark energy and dark
matter [2]. This kind of degeneration is called the theoretical degeneration.

On the other side the observational degeneracy is a consequence of in-
ability to discriminate between theoretical models on the ground of observa-
tional data. The statistical methods cannot resolve this problem definitely,
but can restrict a class of admissible models. Here information criteria play
their role [3, 4, 5, 6, 7, 8].

2. Choosing the right model

We can use some criteria in scientific practice to choose the best model:

• the oldest, the Middle Ages rule: Occam’s razor principle — if two
models describe the observations equally well choose the simpler one.
This principle has aesthetical, as well as empirical justification.

• statistical criteria

— goodness of fit (χ2): favour the models with more parameters

— information criteria (AIC and its generalization): realisation of
Occam’srazor principle, because two models fit data equally well, the
Akaike rule distinguishes model with smaller number of parameters.

Let us assume that we have N pairs of measurements (yi, xi) and that
we want to find the relation between the y and x quantities. Suppose that
we can postulate k possible relations y ≡ fi(x, θ̄), where θ̄ is the vector of
unknown model parameters and i = 1, . . . , k. With the assumption that
our observations come with uncorrelated gaussian errors with mean µi = 0
and standard deviation σi, the goodness of fit for the theoretical model is
measured by the χ2 quantity given by

χ2 =

N∑
i=1

(fl(xi, θ̄)− yi)2

2σ2
i

= −2 lnL,

where L is the likelihood function. For the particular family of models

fl the best one minimize the χ2 quantity, which we denote fl(x,
ˆ̄θ). The

best model from our set of k models f1(x, ˆ̄θ), . . . , fk(x,
ˆ̄θ) could be the one
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with the smallest value of χ2 quantity. But this method could give us
misleading results. Generally speaking, for more complex model the value
of χ2 is smaller, thus the most complex one will be choosen as the best
from our set under consideration.

3. Akaike information criteria

In the information theory there are no true models. There is only reality
which can be approximated by models, which depend on some number
of parameters. The best one from the set under consideration should be
the best approximation to the truth. The information lost, when truth
is approximated by model under consideration, is measured by so called
Kullback-Leibler (KL) information, so the best one should minimize this
quantity. It is impossible to compute the KL information directly, because
it depends on truth, which is unknown. Akaike found approximation to the
KL quantity, which is called the Akaike information criterion (AIC) and is
given by [9]

AIC = −2 lnL+ 2d,

where L is the maximum of the likelihood function and d is the number of
model parameters.

Model, which is the best approximation to the truth from the set under
consideration, has the smallest value of the AIC quantity. It is convenient
to evaluate the differences between the AIC quantities computed for the
rest of models from our set and the AIC for the best one. Those differences
∆AIC

∆AICi = AICi −AICmin

are easy to interpret and allow a quick ‘strength of evidence’ for considered
model with respect to the best one. The models with

• 0 ≤ ∆AIC ≤ 2 have substantial evidence as the best model,

• 4 < ∆AIC ≤ 7 have considerably less support than the best model,

• ∆AIC > 10 have essentially no support with respect to the best model.

The AIC is not consistent because the true model among models con-
sidered is not always pointed out. Therefore, Bozdogan proposed the con-
sistent version of AIC [10]

cAIC = −2 lnL+ d(lnN + 1)

where L is a maximum of the likelihood function, d is a number of model
parameters, N is a number of observations.

Taking into account the number of observations apart from a number
of parameters, the cAIC “penalizes” stronger models with high number of
parameters.
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4. Models of dark energy

We consider 10 representative models divided into 2 groups. There are 5
models with substantial form of dark energy and 5 models with modified
gravity. The former are presented in table 1 and the latter are presented
in table 2.

Table 1: Models with a substantial form of dark energy
No. Cosmological model

1 ΛCDM wX = −1
H2(z)
H2

0
= Ωm,0(1 + z)3 + (1− Ωm,0)

2 constant E.Q.S. wX = w0 < −1
H2(z)
H2

0
= Ωm,0(1 + z)3 + (1− Ωm,0)(1 + z)3(1+w0)

3 dynamic E.Q.S. wX = w0 + w1(1− a)
H2(z)
H2

0
= Ωm,0(1 + z)3 + (1− Ωm,0)(1 + z)3(w0+w1+1) exp[−3w1z

1+z ]

4 quintessence w̄X(a) =
∫
wX(a)d(ln a)/

∫
d(ln a) ≡ w0a

α

H2(z)
H2

0
= Ωm,0(1 + z)3 + (1− Ωm,0)(1 + z)3(1+w0(1+z)−α)

5 oscillating E.Q.S. wX(z) = −1 + (1 + z)3

{
C cos(ln(1 + z))

}
H2(z)
H2

0
= ΩΛ,0 exp

(
(1 + z)3D2 cos(ln(1 + z))

)
+ Ωm,0(1 + z)3

Table 2: Models with modified gravity
No. Cosmological model

6 Interacting DE & DM
H2(z)
H2

0
= Ωm,0(1 + z)3 + Ωint,0(1 + z)n + 1− Ωm,0 − Ωint,0

7 Bounce ΛCDM
H2(z)
H2

0
= Ωm,0(1 + z)3 − Ωn,0(1 + z)n + 1− Ωm,0 + Ωn,0

8 Cardassian
H2(z)
H2

0
= Ωr,0(1 + z)4 + Ωm,0(1 + z)4

[
1

1+z + (1 + z)k
(

ΩC,0

Ωm,0

)
E(z)

]
9 DGP

H2(z)
H2

0
=
[√

Ωm,0(1 + z)3 + Ωrc,0 +
√

Ωrc,0

]2
, Ωrc,0 =

(1−Ωm,0)2

4

10 Sahni-Shtanov brane I
H2(z)
H2

0
= Ωm,0(1 + z)3 + Ωσ,0 + 2Ωl,0 − 2

√
Ωl,0P (z)

To compare the above models we use the SNIa data, constraints from
the CMB shift parameter, constraints from the SDSS parameter A as well
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as H(z) observational data.
For the SNIa the likelihood function has the following form

LSN ∝ exp

[
−1

2

(
N1∑
i=1

(µtheor
i − µobs

i )2

σ2
i

)]
, (1)

where N1 is the number of supernovae, σi is known, µobs
i = mi −M (mi–

apparent magnitude, M–absolute magnitude of SNIa), µtheor
i = 5 log10DLi

+M, M = −5 log10H0 + 25 and DLi = H0dLi, where dLi is the lu-
minosity distance, which with the assumption k = 0 is given by dLi =
(1 + zi)c

∫ zi
0

dz′

H(z′) .

We also include information obtained from the CMB data. Here the
likelihood function has the following form

LR ∝ exp

[
−(Rtheor −Robs)2

2σ2
R

]
,

where R is the so called shift parameter, Rtheor =
√

Ωm,0

∫ zdec
0

H0
H(z)dz, and

Robs = 1.70± 0.03 for zdec = 1089.

As the third observational data we use the measurement of the baryon
acoustic oscillations (BAO) from the SDSS luminous red galaxies. In this
case the likelihood function has the following form

LA ∝ exp

[
−(Atheor −Aobs)2

2σ2
A

]
,

where Atheor =
√

Ωm,0

(
H(zA)
H0

)− 1
3
[

1
zA

∫ zA
0

H0
H(z)dz

] 2
3

and Aobs = 0.469 ±
0.017 for zA = 0.35.

Finally, we used the observational H(z) data. This data based on the
differential ages ( dtdz ) of the passively evolving galaxies which allow to esti-

mate the relation H(z) ≡ ȧ
a = − 1

1+z
dz
dt . Here the likelihood function has

the following form

LH ∝ exp

(
−1

2

[
N2∑
i=1

(H(zi)−Hi(zi))
2

σ2
i

])
,

where N2 is a number of observations, H(z) is the Hubble function, Hi, zi
are observational data.

The final likelihood function is given by

L = LSNLRLALH .
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Table 3: Results of AIC and cAIC
Model AIC cAIC

1 217.88 226.51
2 219.89 232.83
3 217.02 234.27
4 217.49 234.74
5 220.01 237.26
6 219.16 236.41
7 221.88 239.13
8 218.88 231.82
9 226.87 235.50
10 221.88 239.13

The AIC and cAIC have been calculated for all models considered. The
results of both information criteria are presented in table 3. In this context
we can see the advantage of using the consistent AIC for discrimination
of the best model. While the AIC indicated substantial support for four
models: 3rd, 4th, 1st and 8th, the cAIC point out only the 1st model—the
ΛCDM model.

Moreover, the cAIC exposes more models to have no support with re-
spect to the best model. These are 5th, 7th and 10th by the cAIC, and only
5th by the AIC. The rest models have less support than the best model in
the respective categories.

5. Conclusions

Our investigation shows that the degeneration problem of type I (theo-
retical) can be removed because the cAIC favoured standard cosmological
model (ΛCDM model). Note that the “true” model of the Universe may
be absent from the sample of models used in our analysis. Therefore, we
see how important the theoretical trend is.

The detailed results are the following.

• The AIC shows that 4 models has substantial evidence (with model 3
being the best, models 1, 4 and 8 have AIC difference less than 2 with
respect to model 3) — our degeneration problem is still not solved.

• The cAIC shows model 1 — the ΛCDM model — as the best model
with no substantial support for any other model — the degeneration
problem is solved.
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