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Dynamical symmetries, coherent states and
nonlinear realizations: The SO(2, 4) case

Andrej B. Arbuzov and Diego Julio Cirilo-Lombardo

Nonlinear realizations of the SO(2,4) group are discussed from the point of
view of symmetries. Dynamical symmetry breaking is introduced. One
linear and one quadratic model in curvature are constructed. Coherent

states of the Klauder—Perelomov type are defined for both cases taking into

account the coset geometry. A new spontaneous compactification
mechanism is defined in the subspace invariant under the stability
subgroup. The physical implications of the symmetry rupture in the context
of nonlinear realizations and direct gauging are analyzed and briefly
discussed.
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Introduction

Problem of general cov. transf. and
pseudoriemannian metric
Yang-Mills extension to any Lie symmetry

Tetrad
As gauge potentials in YMT

\
Fiber bundles not natural
Poincare as IW contraction of SO(2,3), SO(1,4)
(SU(2,2)subgroups) )

Gravity as gauge theory in a pure geometrical
context N
The problem to determine which fields

transform as gauge fields and which not, as
well as which fields are physical ones and )

which are redundant

condition of
Symmetry breaking conditions implemented by means of a
particular choice of the metric tensor.

This approachin a

underlying geometry must be reductive (in the




Coset coherent states
Let us remind the definition of coset coherent states

Hy=4ge G| Ug)Vo=Vo} <G.
Consequently the orbit is isomorphic to the coset, e.g.
O(V()) = G/H()

Analogously, if we remit to the operators, e.g.

VoXVol = po

then the orbit

2

G/H

OVy)

with

H={ge G | Ug)Vy=0Vy}
={ge G | Ug)poh'(g) = po} < G.

The orbits are identified with cosets spaces of G with respect to the corresponding
stability subgroups Ho and H being the vectors V, in the second case defined within a
phase. From the quantum viewpoint |Vo>€H (the Hilbert space) and po<F (the Fock
space) are Vo normalized fiducial vectors (embedded unit sphere in H).




Symmetry Breaking Mechanism: The SO(2,4) Case

i) Let a,b,c=1,2,3,4,5 and i,j,k=1,2,3,4 (in the six-matrix representation) then the Lie algebra
of SO(2,4) is

~,

JijsJi] = Nt + Nidie — N — N it
Jsi,Ji]l = nidsi — niid sk,
1Jsi,Js;] = =Jyj,

~,

o~

Joa>Ibe] = NaeJob — NavJoc
[J6arJon] = =Jap.

~.

o~

ii) Identifying the first set of commutation relations as the lie algebra of the SO(1,3) with
generators Jik=-Jki

iii) The 1¢* commutation relations plus 2" and 3™ are identified as the Lie algebra SO(2,3) with
the additional generators J5i and nij=(1,-1,-1,-1).

iv) The commutation relations 15t to 5" is the Lie algebra SO(2,4) written in terms of the Lorentz
group SO(1,3) with the additional generators J5i, J6b, and Jab=-Jba, where nab=(1,-1,-1,-1,1). It
follows that the embedding is given by the chain SO(1,3)=S0(2,3)=S0(2,4)



From the six dimensional SO2.,4) S0(2,3)
matrix representation SO(2’ 4) S0(2,3) SO(1.3) SO(I, 3),

parameterizing the coset
any element G of SO(2,4) +— G = e—iza(x)Ja G(H)

is written as
_ iz (W)a e (x)Px H(A).

~—~— ]

Consequently we have G(H):H—=>G is an embedding of an element of SO(2,3) into SO(2,4) where Ja=(1/A)J6a
and H(A):A—->H is an embedding of an element of SO(1,3) into SO(2,3) where Pk=(1/m)Jsk as follows

4 A

S0(3,1) 0

G = e iz*0)a e—isk(x)Pk

0 I 2x2

\
~

H(A)

Y

G(H)
any element G of SO(2,4) is written as the product of an SO(2,4) boost, an ADS boost, and a Lorentz rotation.



Goldstone Fields and Symmetries

i) Our starting point is to introduce two 6-dimensional vectors V; and V, being invariant under SO(3,1) in a
canonical form

=
(o (o (0
0 0 0
0 0 0 ) .
+ - > invariant under SO(3,1)
0 0 0
A 0 A
0/ \ B/ \ 3/
PN " . ~ g
12} V> Vo /

i) Now we take an element of Sp(2)=Mp(2) embedded in the 6-dimensional matrix representation operating over
V as follows

7000000\ 0o\ [/ 0 )
000O00O0 0 0
My 00000 R S L A’=aA-bB,-B'=cA-dB
0000O00O0 0 0
000O0abdb A A
\OOOOcd/\—B/ \—B’/
SP(Z);MP(Z) ) I‘/,o

consequently we obtain a Klauder-Perelomov generalized coherent state with the fiducial vector Vo.




ii) The specific task to be made by the vectors is to perform the breakdown to SO(3,1). Using the transformed
vectors above (Sp(2)~ Mp(2) CS) the symmetry of G can be extended to an internal symmetry as SU(1,1) given
by G below (notice |A|2-|u|?%=1):

( ) ( )

SO(3,1) 0 SO(3,1) | 0
é;vf _ t-,_—iza(I)Jae_igk(I)Pk V! _ e—izﬂ(m)Jae—iek(x)Pk Vo = GV,
0 A 0 aU
\ A ) \ 03 /
fi;(jx) . g H(A) ,
\ — / G(H)
G(H)

/ 00000 0 \ and if we also ask for DetM=1 then ap=1, e.g. the
0000 0 0 additional phase: it will bring us the 10~ {th} Goldstone
0000 O 0 field. The other nine are given by z(x) and £(x)

M = 0000 0 0 (a,b,c=1,2,3,4,5 and i,j,k=1,2,3,4) coming from the
parameterizations of the cosets C=((SO(2,4))/(S0O(2,3)))
0000 A% -pp and P=((50(2,3))/(SO(1,3))).
\ 0000 —wa ip )



Invariant SO(2, 4) Action and Breakdown Mechanism

i Linear in RAB

MAB SO(2,4)-valuated acts as multiplierin S

. ARB in this case we note at first, that the tensor
S = _[ Hag N\ R

i) if we have two diffeomorphic (or gauge) nonequivalent SO(2,4)-valuated connections, namely I"{AB} and I'"{AB},
their difference transforms as a second rank six-tensor under the action of SO(2,4)

AB _ (A B .CD
K GCGDK,

~AB
18 = T a8,

ii) now calculate the modified curvature

~AB
R = R 1 Dic

where the SO(2,4) covariant derivative is defined in the usual way
D48 = dic4? + FAC AKB + Flj) A k4P,
iii) Redefining the SO(2,4) six vectors as l]JA and @B (in order to put all in standard notation), the 2-form k can be

constructed as Byl pBIgU.
Consequently (U scalar function) and get
B = R + Dy pBldU)
= R18 + (w1 DBl — o1 DyBl) A dU.



The next step is to find the specific form of [LaB (such that will be invariant under tilde transformation) in
order to make the splitting of the transformed action S reductive as follows

iv) Let us define

~A

0

with the connection N+k, then

~A
0" =Do" +x*, 0",
W—J
GA

0 =0+ [y (0®)’ — 9y - 9) | A aU,

where (¢#)* = ((0 B(PB> and (y - @) = y39” etc

In the same manner we also define

7' =Dy,

T =n'+|viy - 0)— o' (w®)’ | AdU.

v) To determine [LAB we propose to cast it in the form

Hap C Ps[a‘//F(PE€ABCDEF(9C A 77D +0C N 0P + 77C A UD) + bKAB]

H,p € Hap — %psal//F(pEeABEng A dU,

where & = (y*)* (9?)” — (v - ).



vi) Finally we must see the behaviour of the transformed action

§= IﬁAB /\RAB

= S+J‘%psa1<,43 A RAB /\df-i—j,ll,g} A Dic48.

We see that till this point, the SO(2,4)-valuated six-vectors Y”~{F} and @”{E} are in principle arbitrary. However, under
the conditions discussed in the first Section the vectors go to the fiducial ones modulo a phase. Consequently

£->A%B?
and the bivector comes to

k48 - ylUeBldU - A(AB)e* = afABe*’ = ABe*P,  a,B : 5,6,

where we define the 2nd rank antisymmetric tensor €af3 and

Afa —up . :
A = Det = aff = 1(unitary transformation)

—uta AP



A=m and B=A

* If the coefficients A=m and B=A play the role of constant parameters we have

dé - d(A2m?) = 0

D48 - d(Am)e® A dU = 0

making the original action S invariant e.g.:

S|, ~ (7w AR = s AR = 5

being S| the restriction of S under the subspace generated by V)
Vo

and consequently breaking the symmetry from SO(2,4)->50(1,3).



The connections after the symmetry breaking (when the mentioned conditions with A
and m constants are fulfilled) become

~AB ~i ~i6

~Ij . 5 : .
T =T 4k = hos~T =T T =15 T =%,

~56
but I =TI°—Am)dU.

Vectors " and 7! after the symmetry breaking and under the same conditions become

0" =do” + [ A e +x%0% = boo.s.,

Y

9/1

5i:9i:O+Fi5m+O:>0i:Fi5m,
9 =0=0+0=0,

7' =dy* +TLAy© +xiy®? = b.o.s.,

QA
7 0-T 2+0=n =T,

~6=T]6=0

=

and evidently Wis=Hie=0.



curvatures becomes

RV =R} o 200N+ 270 AT,
DG’

5 _ 1| ;i i, A 165 i i A T65
RS =m™' | do'+ o' A6 +(,1)’7/\F [D@ Ly’ AT ]

. . -1
Rl6 Z—A_I[Dnl—(%) 91/\1'*56]’
RS

6 = dI*% + (mA)~'6; A 17/,

D is the SO(1,3) covariant derivative.

The tensor responsible of the symmetry breaking becomes to

Wy = =2psaime (0% A’ + 0% A O' + nf A ')
Hs6 = —psbe56/1mdU.




Consequently, with all ingredients at hand, the action will be

S = [pas ANR® =[ iy ARV + [ use AR,

Y

Sl SZ

S| = —2Ipsa€ijk1(9k/\ nl+0k/\91 + T]k A 7][) A (AH’ZRZ }-I— %91 A + %nl A TI/)
= —2Jpsa€,-jk1<0k ANl A /lmRi{ L+ ANE /\/lmRi{ L+ " AntA lmRi{ }>
=2 [ poaesa(0F ' A 50T N0+ 05 NOT A0 A0+ nf A A 07 N0

—2J.psae,-jk,(9k/\nl/\%n"/\n’#H"/\Hl/\%niA17j+17k/\171/\%77i/\17/>

S, = —lmjpsb€56 A (dF56 +(m2)7'0; A 77i>




At this point we can naturally associate the tetrad field with the 6-form

0k ~ ek
_ 'k _ a b k b _ Sa
Nap = gjkelaeba 8jk = Nab€; €y €,€, = Op, etc. ,

where Njk is the Minkowski metric. That allows us to up and to down indices, and n”{i} with the
following symmetry typical of a SU(2,2) Clifford structure

77k Nfzwaa
efﬂ;gﬂc =Jfiy =i

that consequently allows us to introduce the electromagnetic field (that will be proportional to
flj) into the model.



S1 = =2 [ puaegu(@* A+ 04 N0+t A" A (AR + 07 A0+ L A )
=2 [ pea| am(fiR] |+ (e + )R] ) + (& + 2 )y
+(%‘/§ + %‘/j_{) }d“x.

i) terms ~nAnANAB and nABABAB vanish;
i) terms ~ n AN AOAOand n An A6 AB lead to — f¥f;
iif) term ~ €;10% A ' A RZ , leads —>f,-jRZ \

iv) term~ €05 A 0" + n* A n’)RZ , leads to - (gij +ﬁf"1’>RZ \
picking the symmetric part of the generalized Ricci tensor (containing Einstein-Hilbert plus
quadratic torsion term)

V) terms ~ n/\n/\n/\nandé?/\H/\H/\Qleadtothevolumeelements‘/J_‘and‘/g

where we defined as usual g = Der(gy) and f = Det(fy) = (fo/%)°.



A=m(x) and B=A(x): Spontaneous subspace

If the coefficients A=m(x) and B=A(x) are not constants but functions of the coordinates we have

dé - d(2*m?) = 2d(Am) DB - d(Am)e®P A dU
Consequently
$= [T AR”| = S+ [Lpsarcis AR AdE+ [ 145 A DicAB

S = S+ [[ap + psaRuprm]e®Pd(Am) A dU.

we obtain the required condition:

~

S=3S if
Hap = _psaRaﬁlma

then we see that UaB takes the place of induced metric and is proportional to the curvature

Rap = Afiap
with A = —(psalm)™".

Note that we have now a four-dimensional spacetime plus the above "internal" space of a
constant curvature. This point is very important as a new compactification-like mechanism



Quadratic in Ras

The previous action, linear in the generalized curvature, has some drawbacks that
make necessary the introduction of additional "subsidiary conditions" due that the
curvatures Ri5 and Ri6 play not role into the linear/first order action. Such
curvatures have very important information about the dynamics of 6 and n fields.
In order to simplify the equations of motion we define

¢ =4
m0 =10,
/’L—lni = fﬁi,

and as always

RV = RZ }+m‘20i/\01+/1‘2ni/\17j

with the SO(1,3) curvature R | = do’ + o', A 0¥



Consequently from the quadratic Lagrangian density

S = IRAB A RAB

we obtain the following equations of motion:

O(R, 5 N\ R1E ~ —~ =i -
(Ryp A )»D(Dej)+2R,-jA9—0 AT, AT, +0; AANA =0,

00’
S(R4p A R'?) W o~ F o~

S = D(DW,) + 2R AT =0 AT AT+ T A A AA =0,
S(Rup ANRB) i i~

SI36 > O A0 =T AT

S(R4p N R'E) ~ o~ - =
; —>—DRkl-I—DQk/\Q]-I—Dﬁk/\7]1+9k/\7]l/\A=O.

l
6a)j




Maxwell equations and the electromagnetic field

we can identify

0" = eldx",
n' = fldx*
with the symmetries
z _ SV __
e e; =0y, eueiv = guw = gvy

ﬁtfiv = 0y, eivfﬁ =Jw = —fvu

such that the geometrical (Bianchi) condition

Vipfw) = V" =0

D(’é’ A le) =0
enforce to the curvatures R® and R” to be null. And conversely if R® and R are zero thenD(@i A Tji) =0
or equivalently V,f ) = Vof*" = 0.



Proof

From: RS = [Dgi_fﬁi /\F65] and R0 — I:_Dﬁi+’§i /\F56] we make

RS AT+ AR = D(O"AT,) + G ATS) AT+ 8 A (87 AT),

RS AT, +0: ARS = D(B'AT,).

~

(In the last line we used the constraint given by eq 0'NO; =T A 7,
Consequently if R and R” are zero then D(gi AT i) = 0 or equivalently V(,f,,; = V4" = 0 and vice versa.

Corollary

Note that the vanishing of the R*® curvature (that transforms as a Lorentz scalar) does not
modify the equation of motion for ™® and simultaneously defines the electromagnetic field as

R =dI% + mA)'0; An' = 0,
= dA-F =0.



Equations of motion in components and symmetries

Let us define ij ij ik ki
R{ vy = 0uv — 0y 05 + 01,0V — 0o,
i i i ik Tk
T, = 0ue, —Ovey, + @ ey =0 e

Siy = 0ufs —0fut @' fh—w! fh.

S}, is a totally antisymmetric torsion field due the symmetry of f,dx" = n’

Vo[ Jlgl R |+ flgl (m2 P 4+ 2257) — flgl )7 4T < o,
Vo il (RE, = m2elinel 4+ 32 flinpiv ) |
+ Jlg| m 2T+ A725) — [ig| (Am) 7 fliv 47 = o,
Vo(Jlel P ) + flgl (R, - m2e +.474v) =0,
Va(Vigls) + Jlel (R , = 22f7 +4bal)) = o,

Viudv) = Fuy = Qm) ' Fy,
Vipt'w) = 0.




Nonlinear realizations viewpoint

Notice that in our case identify 8~e and n~f being the table below completely understood.
Also the I is identified with the g of E. lvanov and J. Niederle

this work cite: Ivanov:1981wn,Ivanov:198 1wm
RY RY \+m20 NG+ 220 Ay R | +4ge' Af
R® m~' [D' — L' AT] De' +2ge' N g
RS 27Dy = ()0 AT® | Dff -2¢f A g
R3® dl>¢ + (mA)"'0; A nf dg +4ge; \f'
DS/ADS reduction | Yes No

Algebra and transformations in the case of the work of Ilvanov and Niederle are different due different
definitions of the generators of the SO(2,4) algebra, however the meaning of g that it is associated to
the connection ®® remains obscure for us because the second Cartan structure equations RA{i5} and
RMNi6}. Notice that, although the group theoretical viewpoint in the case of the simoultaneous
nonlinear realization of the affine and conformal group Borisov:1974 to obtain Einstein gravity are
more or less clear, the pure geometrical picture is still hard to recognize due the factorization problem
and the orthogonality between coset elements and the corresponding elements of the stability

subgroup

A.B.Borisov and V.l.Ogievetsky, Theor.Math.Phys.21, 1179 (1975) [Teor.Mat. Fiz.21, 329 (1974)];
E. A. lvanov and J. Niederle, Phys. Rev. D 25, 976 (1982), Phys. Rev. D 25, 988 (1982).



Discussion

In this work, we introduced two geometrical models: one linear and another
one quadratic in curvature.

Both models are based on the SO(2, 4) group.

Dynamical breaking of this symmetry was considered. In both cases, we
introduced coherent states of the Klauder—Perelomov type, which as defined
by the action of a group (generally a Lie group) are invariant with respect to
the stability subgroup of the corresponding coset being related to the possible
extension of the connection which maintains the proposed action invariant.

The linear action, unlike the cases of West, Kerrick or even McDowell and
Mansouri [41], uses a symmetry breaking tensor that is dynamic and unrelated
(in principle) to a particular metric.

Such a tensor depends on the introduced vectors (i.e. the coherent states) that

intervene in the extension of the permissible symmetries of the original
connection.

Only some components of the curvature, defined by the second structure
equation of Cartan, are involved in the action, leaving the remaining ones as a
system of independent or ignorable equations in the final dynamics.



Discussion

7 The quadratic action, however, is independent of any additional structure or
geometric artifacts and all the curvatures (e.g. all the geometrical equations
for the fields) play a role in the final action (Lagrangian of the theory).

8 With regard to the parameters that come into play A and m (they play the
role of a cosmological constant and a mass, respectively), we saw that in the
case of linear action if they are taken dependent on the coordinates and
under the conditions of the action invariance, a new spontaneous
compactification mechanism is defined in the subspace invariant under the
stability subgroup.

9 Following this line of research with respect to possible physical applications,
we consider scenarios of the Grand Unified Theory, derivation of the
symmetries of the Standard Model together with the gravitational ones. The
general aim is to obtain in a precisely established way the underlying
fundamental theory.

1T his will be important, in particular, to solve the problem of hierarchies and
fundamentalconstants, the masses of physical states, and their interaction.



Supergravity as a gauge theory and topological QFT

we have shown, by means of a toy model, that there exists a supersymmetric analog of the above
symmetry breaking mechanism coming from the topological QFT. Here we recall some of the
above ideas in order to see clearly the analogy between the group structures of the simplest
supersymmetric case, Osp(4), and of the classical conformal group SO(2,4)

The starting point is the super SL(2C) superalgebra (strictly speaking Osp(4))

[Myp,Mcp] = €c(uMp), + €p(4Mp)
[Myp,0cl = €c(4Q8), {04,085} = 2Mys.

We define the superconnection A _ afAs . BAS )
superconnec APT, = a)“ﬁMaﬂ+a)“ﬂMaﬁ+a)“ﬁMdﬁ+a)“Qa -0*Q.,
due the following "gauging

where (w-M) define a ten dimensional bosonic manifold (Corresponding to the number of
generators of SO(4,1) or SO(3,2) that define the group manifold) and p=multi-index, as usual.
Analogically the super-curvature is defined by F=F-T with the following detailed structure

F(M)*? = R1B + 94 A 0® =0,
FO)! = do* + 0. A0 = dyo? =0,

mdices 4,B,C... stay for a, 3, 7. .. (d, B, y... ) spinor indices: a, ﬂ(d, ﬁ) =1,2 (1 , 2) i the Van der Werden spinor notation



There are a bosonic part and a fermionic one associated with the even and odd generators of
the superalgebra. Our proposal for the "toy" action was (as before for SO(2,4)) as follows

S=jFp/\,up

where the tensor pp (that plays the role of a Osp(4) diagonal metric as in the Mansouri
proposal) is defined as

Hap = Ca Al tap =Ca ACp pa = Vi etc.

with o anti-commuting spinors (suitable basis: In general this tensor has the same structure
that the Cartan-Killing metric of the group under consideration) and v the parameter of the

breaking of super SL(2C) (Osp(4)) to SL(2C) symmetry of [ lp. Notice that the introduction of the
parameter v means that we are not take care in the particular dynamics to break the symmetry.

Dvnamical equations

6S = [6F Ay + F? A S,

= [dapty N 547 + P Spy,

where da is the exterior derivative with respect to the super-SL(2C) connection and: 6F= da 6A
have been used.



Then, as the result, the dynamics are described by

dA,UZO, F=0

1)The first equation claims that p is covariantly constant with respect to the super SL(2C) connection.

2) SL(2C) symmetry breaks down to SL(2C) dsu=dyup+dyuy =0

3)super Cartan connection to be flat A = 048 + p4

F(M)*8 = RAB 4 94 A @® = 0,
F(O)* = do? + a)AC Ao¢ =dy,0? =0,

d,, is the exterior derivative with respect to the SL(2C) connection and R*8 = dw4? + a)AC A 0B is the SL(2C) curvature

F=0c RB+pi N8 =0 and d,n? =0

The second condition says that the SL(2C) connection is super-torsion free.
The first says not that the SL(2C) connection is flat but that it is homogeneous with a cosmological constant related to
the explicit structure of the Cartan forms w”{A},
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