
Dynamical symmetries, coherent states and 
nonlinear realizatons: The SO(2, 4) case

Nonlinear realizatons of the SO(2,4) group are discussed from the point of 
view of symmetries. Dynamical symmetry breaking is introduced. One 
linear and one quadratc model in curvature are constructed. Coherent 

states of the Klauder–Perelomov type are defned for both cases taking into 
account the coset geometry. A new spontaneous compactfcaton 
mechanism is defned in the subspace invariant under the stability 

subgroup. The physical implicatons of the symmetry rupture in the context 
of nonlinear realizatons and direct gauging are analyzed and briefy 

discussed.
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Introducton

UTIYAMA `56

Problem  of general cov. transf. and 
pseudoriemannian metric
Yang-Mills extension to any Lie symmetry

Ne`eman-Regge`78,    Hashashi-Shirafuji `81
Tetrad
As gauge potentals in YMT

Shirafuji-Suzuki`88, Ivanov-Niederle`82, Stelle-West`80

Fiber bundles not natural
Poincare as IW contracton of SO(2,3), SO(1,4) 
(SU(2,2)subgroups)

Volkov-Soroka, Arnowit-Pran-Nath

Gravity as gauge theory in a pure geometrical 
context
The problem to determine which felds 
transform as gauge felds and which not, as 
well as which felds are physical ones and 
which are redundant 

Mansouri-MacDowell´77

conditon of 
Symmetry breaking conditons implemented by means of a 
partcular choice of the metric tensor. 
This approach in a 
underlying geometry must be reductve (in the 



Coset coherent states

H0  g  G  UgV0  V0   G.

OV0   G/H0 .

|V0 V0 |  0

OV0   G/H

H  g  G  UgV0  V0 

 g  G  Ug0Ug  0   G.   #   

The orbits are identfed with cosets spaces of G with respect to the corresponding 
stability subgroups H₀ and H being the vectors V₀ in the second case defned within a 
phase. From the quantum viewpoint |V₀> H∈  (the Hilbert space) and ρ₀ F∈  (the Fock 
space) are V₀ normalized fducial vectors (embedded unit sphere in H).

Let us remind the defniton of coset coherent states

Consequently the orbit is isomorphic to the coset, e.g.

Analogously, if we remit to the operators, e.g.

then the orbit

with



Symmetry Breaking Mechanism: The SO(2,4) Case 

iJij,Jkl   ikJjl  jlJik  ilJjk  jkJil,

iJ5i,Jjk   ikJ5j  ijJ5k,

iJ5i,J5j   Jij,

iJ6a ,Jbc   acJ6b  abJ6c,

iJ6a ,J6b   Jab .

  #   

  #   

  #   

  #   

  #   

i) Let a,b,c=1,2,3,4,5 and i,j,k=1,2,3,4 (in the six-matrix representaton) then the Lie algebra 
of SO(2,4) is 

ii) Identfying the frst set of commutaton relatons as the lie algebra of the SO(1,3) with 
generators Jik=-Jki

iii) The 1st  commutaton relatons plus 2nd and 3rd are identfed as the Lie algebra SO(2,3) with 
the additonal generators J5i and ηij=(1,-1,-1,-1).

iv) The commutaton relatons 1st to 5th is the Lie algebra SO(2,4) writen in terms of the Lorentz 
group SO(1,3) with the additonal generators J5i, J6b, and Jab=-Jba, where ηab=(1,-1,-1,-1,1). It 
follows that the embedding is given by the chain SO(1,3) SO(2,3) SO(2,4)⊂ ⊂



         From the six dimensional 
matrix representaton 
parameterizing the coset 
any element G of SO(2,4) 
is writen as

SO2,4  SO2,4
SO2,3

 SO2,3
SO1,3

 SO1,3,

G  eizaxJa GH

 eizaxJa eikxP k H.   #   

G  eizaxJa

GH

eikxPk

H 

SO3,1 0

0 I2x2

any element G of SO(2,4) is writen as the product of an SO(2,4) boost, an ADS boost, and a Lorentz rotaton.

Consequently we have G(H):H→G is an embedding of an element of SO(2,3) into SO(2,4) where Ja≡(1/λ)J6a 
and H(Λ):Λ→H is an embedding of an element of SO(1,3) into SO(2,3) where Pk≡(1/m)J5k as follows



Goldstone Fields and Symmetries
i) Our startng point is to introduce two 6-dimensional vectors V₁ and V₂ being invariant under SO(3,1) in a 

canonical form

V1

0

0

0

0

A

0



V2

0

0

0

0

0

B



V0

0

0

0

0

A

B

invariant under SO3,1

ii) Now we take an element of Sp(2) Mp(2) embedded in the 6-dimensional matrix representaton operatng over ⊂
V as follows

MV 

Sp2Mp2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 a b

0 0 0 0 c d

V0

0

0

0

0

A

B



0

0

0

0

A 

B

 V  A′=aA-bB,-B′=cA-dB

consequently we obtain a Klauder-Perelomov generalized coherent state with the fducial vector V₀.



ii) The specifc task to be made by the vectors is to perform the breakdown to SO(3,1). Using the transformed 
vectors above (Sp(2)  Mp(2) CS) the symmetry of G can be extended to an internal symmetry as SU(1,1) given ∼
by G below (notce |λ|²-|μ|²=1):

M 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0  

0 0 0 0  

and if we also ask for DetM=1 then αβ=1, e.g. the 
additonal phase: it will bring us the 10^{th} Goldstone 
feld. The other nine are given by z(x) and ε(x) 
(a,b,c=1,2,3,4,5 and i,j,k=1,2,3,4) coming from the 
parameterizatons of the cosets C=((SO(2,4))/(SO(2,3))) 
and P=((SO(2,3))/(SO(1,3))).



Invariant SO(2, 4) Acton and Breakdown Mechanism
• Linear in RAB

S   AB  RAB

AB  G
C

A G
D

B CD ,

AB  
AB

 AB .

  #   

  #   


R

AB
 RAB  DAB

DAB  dAB  
C

A  CB  
D

B  AD.

in this case we note at frst, that the tensor 
μAB SO(2,4)-valuated acts as multplier in S

i) if we have two difeomorphic (or gauge) nonequivalent SO(2,4)-valuated connectons, namely Γ^{AB} and Γ^{AB}, 
their diference transforms as a second rank six-tensor under the acton of SO(2,4) 

ii) now calculate the modifed curvature

where the SO(2,4) covariant derivatve is defned in the usual way

AB  AB dU.


R

AB
 RAB  DAB dU

 RAB  ADB   ADB   dU.   #   

iii) Redefning the SO(2,4) six vectors as ψA and ϕB (in order to put all in standard notaton), the 2-form κ can be 
constructed as

Consequently (U scalar functon) and get



The next step is to fnd the specifc form of μAB (such that will be invariant under tlde transformaton) in 
order to make the splitng of the transformed acton S reductve as follows




A
 DA

iv) Let us defne




A


A


DA 

B
A B ,




A
 A  AB 2  A    dU,   #   

with the connecton Γ+κ, then

where B 2   B
B and     BB etc

A  DA ,
A  A  2

A    AB 2  dU.   #   

v) To determine μAB we propose to cast it in the form

AB  saFEABCDEFC  D  C  D  C  D   bAB 

AB  AB  1
2
saFEABEFd  dU, where   A 2B 2    2 .

In the same manner we also defne



vi) Finally we must see the behaviour of the transformed acton


S  AB 


R

AB

 S   1
2
saAB  RAB  d  AB  DAB .   #   

ξ→A²B²

AB  AB dU  AB  AB  AB, , : 5, 6,

  Det
 

 
   1unitary transformation

We see that tll this point, the SO(2,4)-valuated six-vectors ψ^{F} and ϕ^{E} are in principle arbitrary. However, under 
the conditons discussed in the frst Secton the vectors go to the fducial ones modulo a phase. Consequently

and the bivector comes to

where we defne the 2nd rank antsymmetric tensor εαβ and



A=m and B=λ

• If the coefcients A=m and B=λ play the role of constant parameters we have

d  d2m2   0

DAB  dm  dU  0


S

V0
  AB 


R

AB
  AB  RAB  S

being

S

V0
the restriction of


S under the subspace generated by V0

and consequently breaking the symmetry from SO(2,4)→SO(1,3).

making the original acton S invariant e.g.:




AB

 AB  AB  b.o. s. 
ij
  ij; 

i5
  i5 , 

i6
  i6 ,

but 
56

 56  mdU.

  #   

  #   




A


A

dA  
C

A  C 
B

A B  b.o. s. ,




i
  i  0  

5
i m  0   i  

5
i m,




5
 0  0  0  0,

A 

A

dA  
C

A  C 
B

A B  b.o. s. ,

 i  i  0  
6

i   0  i  
6

i ,

6  6  0

Vectors



A
and A after the symmetry breaking and under the same conditions become

The connectons afer the symmetry breaking (when the mentoned  conditons with λ 
and m constants are fulflled) become

and evidently μi5=μi6=0.



Rij  R 
ij  m2 i   j  2i  j,

Ri5  m1

Di

d i  
j

i   j  m


i  65  m1 D i  m

i  65 ,

Ri6  1 Di  m


1
 i  56 ,

R56  d56  m1 i  i,

  #   

  #   

  #   

  #   

D is the SO(1,3) covariant derivatve.

 curvatures becomes

The tensor responsible of the symmetry breaking becomes to 

ij  2samijklk  l  k   l  k  l 

56  sb56mdU.

  #   

  #   



Consequently, with all ingredients at hand, the acton will be

S   AB  RAB 

S 1

 ij  Rij 

S 2

 56  R56 ,

S1  2 saijklk  l  k   l  k  l   mR 
ij  

m  i   j  m

i  j

 2 saijkl k  l  mR 
ij  k   l  mR 

ij  k  l  mR 
ij

 2 saijkl k  l  
m  i   j  k   l  

m  i   j  k  l  
m  i   j

 2 saijkl k  l  m

i  j  k   l  m


i  j  k  l  m


i  j

S2  m  sb56  d56  m1 i  i



At this point we can naturally associate the tetrad feld with the θ-form

k  ea
ka

ab  gjkea
j eb

k , gjk  abej
aek

b , ea
k ek

b  b
a , etc. ,

k  fa
ka ,

ej
a fa

k glk  f lj  f jl

  #   

  #   

where ηjk is the Minkowski metric. That allows us to up and to down indices, and η^{i} with the 
following symmetry typical of a SU(2,2) Cliford structure

that consequently allows us to introduce the electromagnetc feld (that will be proportonal to 
flj) into the model.



we can re-write the acton as

S1  2 saijklk  l  k   l  k  l   mR 
ij  

m  i   j  m

i  j

 2 sa m f ijR 
ij  g ij  f i

kf kj R 
ij  

m  m


f kjf kj

 
m g  m


f d4x.   #   

i) terms η η η θ and η θ θ θ vanish;∼ ∧ ∧ ∧ ∧ ∧ ∧

ii) terms         and        lead to  f kjf kj;

iii) term ijklk  l  R 
ij leads  f ijR 

ij

iv) term ijklk   l  k  l R 
ij leads to  gij  f i

kf kj R 
ij

picking the symmetric part of the generalized Ricci tensor (containing Einstein-Hilbert plus 
quadratc torsion term)

v) terms         and        lead to the volume elements f and g

where we defined as usual g  Detg lk  and f  Detf lk   f lk
 f lk 2 .



A=m(x) and B=λ(x): Spontaneous subspace

d  d2m2   2dmd  d2m2   2dm DAB  dm  dUDAB  dm  dU


S  S if

  saRm,   #   

R  

with   sam1 .

  #   

  #   

R  

with   sam1 .

  #   

  #   


S   AB 


R

AB


S  S    saRmdm  dU.

 S   1
2
saAB  RAB  d   AB  DAB

then we see that μAB takes the place of induced metric and is proportonal to the curvature

Note that we have now a four-dimensional spacetme plus the above "internal" space of a 
constant curvature. This point is very important as a new compactfcaton-like mechanism

If the coefcients A=m(x) and B=λ(x) are not constants but functons of the coordinates we have

Consequently

we obtain the required conditon:



Quadratc in RAB

The previous acton, linear in the generalized curvature, has some drawbacks that 
make necessary the introducton of additonal "subsidiary conditons" due that the 
curvatures Ri5 and Ri6 play not role into the linear/frst order acton. Such 
curvatures have very important informaton about the dynamics of θ and η felds. 
In order to simplify the equatons of moton we defne

56  A,

m1 i 



i
,

1i   i,

  #   

  #   

  #   

Rij  R 
ij  m2 i   j  2i  j

and as always

with the SO1,3 curvature R 
ij  d ij  


i  j.



RAB  RAB 

 i
 D D


 j  2Rij 




i 



i   i 
 j 


 j  A  A  0,

RAB  RAB 

i
 D D j  2Rjk 

k 



i   i 

 j 

 j  A  A  0,

RAB  RAB 

56





i 

 i 

 i   i,

RAB  RAB 

 j
i

 DRkl  D

 k 


 l  Dk 

 l 

 k 

 l  A  0.

  #   

  #   

  #   

  #   

Consequently from the quadratc Lagrangian density

S  RAB  RAB

we obtain the following equatons of moton:



Maxwell equatons and the electromagnetc feld

 i  e
i dx ,

i  fi dx 

  #   

  #   

e
i ei

  
 ,e

i ei  g  g

 f   
f  0

D



i   i  0

fi f i
  

 , ei fi  f  f

we can identfy

with the symmetries

such that the geometrical (Bianchi) conditon

enforce to the curvatures Ri6 and Ri5 to be null. And conversely if Ri6 and Ri5 are zero then D



i   i  0

or equivalently  f   
f  0.



Proof

Ri5  D



i   i  65 and Ri6  D i 



i  56 we make

Ri5   i 

 i  Ri6  D




i   i   i  56    i 

 i 




i  56 ,

Ri5   i 

 i  Ri6  D




i   i .

  #   

  #   

Consequently if Ri6 and Ri5 are zero then D



i   i  0 or equivalently  f   
f  0 and vice versa.

From:




i 

 i 

 i   i,(In the last line we used the constraint given by eq

R56  d56  m1 i  i  0,

 dA  F  0.

  #   

  #   

Note that the vanishing of the R⁵⁶ curvature (that transforms as a Lorentz scalar) does not 
modify the equaton of moton for Γ⁵⁶ and simultaneously defnes the electromagnetc feld as

Corollary



Equatons of moton in components and symmetries

R 
ij  

ij  
ij  k

i 
kj  

kjk
i ,

T
i  e

i  e
i  

 k
i e

k  
 k

i
e

k ,

S
i  fi   fi  

 k
i fk  

 k

i
fk .

  #   

  #   

  #   

 |g|Rij  |g| m2T ji  2S ji   |g| m1 f iA i  0,

 |g| R 
ij  m2eiej  2 f if j

 |g| m2T ji  2Sji   |g| m1 f iA i  0,

 |g|T jv  |g| R 
j  m2ej  A iA  0,

 |g|Sji  |g| R 
ij  2 f ij  A iA j  0,

A   F  m1F ,

F   0.   #   

Let us defne

S
i is a totally antisymmetric torsion field due the symmetry of fi dx   i



Nonlinear realizatons viewpoint

this work cite: Ivanov:1981wn,Ivanov:1981wm

Rij R 
ij  m2 i   j  2i  j R 

ij  4gei  f j

Ri5 m1D i  m
 

i  65  Dei  2gei  g

Ri6 1 Di   m

1 i  56 Df i  2gf i  g

R56 d56  m1 i  i dg  4gei  f i

DS/ADS reduction Yes No

Algebra and transformatons in the case of the work of Ivanov and Niederle are diferent due diferent 
defnitons of the generators of the SO(2,4) algebra, however the meaning of g that it is associated to 
the connecton Γ⁶⁵ remains obscure for us because the second Cartan structure equatons R^{i5} and 
R^{i6}. Notce that, although the group theoretcal viewpoint in the case of the simoultaneous 
nonlinear realizaton of the afne and conformal group Borisov:1974 to obtain Einstein gravity are 
more or less clear, the pure geometrical picture is stll hard to recognize due the factorizaton problem 
and the orthogonality between coset elements and the corresponding elements of the stability 
subgroup

Notce that in our case identfy θ e and η f  being the table below completely understood. ∼ ∼
Also the Γ⁶⁵ is identfed with the g of E. Ivanov and J. Niederle

A.B.Borisov and V.I.Ogievetsky, Theor.Math.Phys.21, 1179 (1975) [Teor.Mat. Fiz.21, 329 (1974)];
 E. A. Ivanov and J. Niederle, Phys. Rev. D 25, 976 (1982), Phys. Rev. D 25, 988 (1982).



Discussion
1 In this work, we introduced two geometrical models: one linear and another 

one quadratc in curvature. 
2 Both models are based on the SO(2, 4) group. 
3 Dynamical breaking of this symmetry was considered. In both cases, we 

introduced coherent states of the Klauder–Perelomov type, which as defned 
by the acton of a group (generally a Lie group) are invariant with respect to 
the stability subgroup of the corresponding coset being related to the possible 
extension of the connecton which maintains the proposed acton invariant.

4  The linear acton, unlike the cases of West, Kerrick or even McDowell and 
Mansouri [41], uses a symmetry breaking tensor that is dynamic and unrelated 
(in principle) to a partcular metric. 

5 Such a tensor depends on the introduced vectors (i.e. the coherent states) that 
intervene in the extension of the permissible symmetries of the original 
connecton.

6  Only some components of the curvature, defned by the second structure 
equaton of Cartan, are involved in the acton, leaving the remaining ones as a 
system of independent or ignorable equatons in the fnal dynamics. 



Discussion
7 The quadratc acton, however, is independent of any additonal structure or 

geometric artfacts and all the curvatures (e.g. all the geometrical equatons 
for the felds) play a role in the fnal acton (Lagrangian of the theory).

8 With regard to the parameters that come into play λ and m (they play the 
role of a cosmological constant and a mass, respectvely), we saw that in the 
case of linear acton if they are taken dependent on the coordinates and 
under the conditons of the acton invariance, a new spontaneous 
compactfcaton mechanism is defned in the subspace invariant under the 
stability subgroup.

9 Following this line of research with respect to possible physical applicatons, 
we consider scenarios of the Grand Unifed Theory, derivaton of the 
symmetries of the Standard Model together with the gravitatonal ones. The 
general aim is to obtain in a precisely established way the underlying 
fundamental theory. 

10This will be important, in partcular, to solve the problem of hierarchies and 
fundamentalconstants, the masses of physical states, and their interacton.



Supergravity as a gauge theory and topological QFT

MAB,MCD  CAMB D  DAMB C,

MAB,QC  CAQB , QA ,QB  2MAB .   #   

ApTp  
.
M

.
  M  

.


.
M .


.
  Q  

.
Q .

,

we have shown, by means of a toy model, that there exists a supersymmetric analog of the above 
symmetry breaking mechanism coming from the topological QFT. Here we recall some of the 
above ideas in order to see clearly the analogy between the group structures of the simplest 
supersymmetric case, Osp(4), and of the classical conformal group SO(2,4)

The startng point is the super SL(2C) superalgebra (strictly speaking Osp(4))

indices A,B,C. . . stay for ,,. . .
.
,

.

,
.
. . . spinor indices:,

.
,

.

  1,2
.

1,
.

2 in the Van der Werden spinor notation

 We defne the superconnecton A 
due the following "gauging"

where (ω∙M) defne a ten dimensional bosonic manifold (Corresponding to the number of 
generators of SO(4,1) or SO(3,2) that defne the group manifold)  and p≡mult-index, as usual. 
Analogically the super-curvature is defned by F≡F∙T with the following detailed structure

FMAB  RAB  A  B  0,

FQA  dA  
C

A  C  dA  0,

  #   



S   Fp  p  Fp  p

  dAp  Ap  Fp  p ,   #   

S   Fp  p


.
     .

         etc.

There are a bosonic part and a fermionic one associated with the even and odd generators of 
the superalgebra. Our proposal for the "toy" acton was (as before for SO(2,4)) as follows

where the tensor μp (that plays the role of a Osp(4) diagonal metric as in the Mansouri 
proposal) is defned as 

with ζα ant-commutng spinors (suitable basis: In general this tensor has the same structure 
that the Cartan-Killing metric of the group under consideraton) and ν the parameter of the 

breaking of super SL(2C) (Osp(4)) to SL(2C) symmetry of μp. Notce that the introducton of the 
parameter ν means that we are not take care in the partcular dynamics to break the symmetry.

 Dynamical equatons

where dA is the exterior derivatve with respect to the super-SL(2C) connecton and: δF= dA δA 
have been used. 



F  0  RAB  A  B  0 and dA  0
The second conditon says that the SL(2C) connecton is super-torsion free. 
The frst says not that the SL(2C) connecton is fat but that it is homogeneous with a cosmological constant related to 
the explicit structure of the Cartan forms ω^{A}, 

d is the exterior derivative with respect to the SL2C connection and RAB  dAB  
C

A  CB is the SL2C curvature

FMAB  RAB  A  B  0,

FQA  dA  
C

A  C  dA  0,

  #   

dA  0, F  0

1)The frst equaton claims that μ is covariantly constant with respect to the super SL(2C) connecton.
 

dA  dAAB  dAA  02) SL(2C) symmetry breaks down to SL(2C)

3)super Cartan connecton to be fat A  AB  A

Then, as the result, the dynamics are described by
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