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Abstract

The quantum electrodynamics on a spatially flat (1+3)-dimensional Friedmann-
Lematre-Robertson-Walker space-time with a Milne-type scale factor is
considered focusing on the amplitudes of the allowed effects in the first order of
perturbations. The definition of the transition rates is reconsidered obtaining an
appropriate angular behavior of the probability of the pair creation from a photon
which has a similar rate as the leptons creation from vacuum.

Pacs: 04.20.Cv, 04.62.+v, 11.30.-j

arXiv:1602.06810

Keywords: Milne, FLRW, spatially flat, leptogenesis, transition amplitudes, transition
rates.

1



Contents

Introduction 3

Milne’s and Milne-type universes 5

Free fields on M 8

First order QED amplitudes 14

Rates and probabilities 21

Graphical analysis 31

Concluding remarks 37

2



Introduction

• In general relativity, the standard quantum field theory (QFT) based on
perturbations is inchoate since one payed more attention to alternative non-
perturbative methods as, for example, the cosmological particle creation
[1, 2, 3, 4, 5, 6, 7, 8].

• The manifolds of actual interest in the actual cosmology are the
spatially flat FLRW manifolds which are symmetric under translations and,
consequently, there are quantum modes expressed in terms of plane waves
with similar properties as in special relativity.

• These manifolds are useful for studying the behavior of the quantum
matter in the presence of classical gravity turning back to the perturbation
methods of the quantum field theory where significant results were obtained
by many authors [9, 10, 11, 12, 13, 14, 15, 16].
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• Inspired by these results we built the QED in Coulomb gauge on the de
Sitter expanding universe [17], analyzing the processes in the first order
of perturbations that are allowed on this manifold since the energy and
momentum cannot be conserved simultaneously [9, 10, 11, 17].

• Recently we completed this approach with the integral representation of
the fermion propagators we need for calculating Feynman diagrams in any
order of perturbations [18]. Thus we have an example of a complete QED
on the de Ssitter background.

• Looking for another example of manifold where the QED could be
constructed without huge difficulties we observed that there exists an
expanding space-time where the free field equations can be analytically
solved [19].

This is the (1+3)-dimensional spatially flat FRLW manifold whose expansion
is given by a Milne-type scale factor, proportional with the proper (or cosmic)
time, t.
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Milne’s and Milne-type universes

The general metric in spherical coordinates of the (1+3)-dimensional FLRW
manifolds,

ds2 = dt2 − a(t)2

[
dr2

1− κr2
+ r2dθ2 + r2 sin2 θdφ2

]
(1)

with a Milne-type scale factor, a(t) = ωt, depending on parameter ω, is
produced by the sources

ρ =
3

8πG

ω2 + κ

ω2t2
, p = − 1

8πG

ω2 + κ

ω2t2
, (2)

Genuine Milne universe: ω = 1 and κ = −1→ ρ = p = 0

Spatially flat Milne-type univese (M): κ = 0 and arbitrary ω such that

ρ =
3

8πG

1

t2
, p = − 1

8πG

1

t2
. (3)
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In this manifold we define the usual FLRW chart whose coordinates xµ

(labeled by the natural indices µ, ν, ... = 0, 1, 2, 3) are the proper time x0 = t
and the Cartesian space coordinates, xi (i, j, k... = 1, 2, 3), for which we
may use the vector notation ~x = (x1, x2, x3).

This chart, denoted by {t, ~x}, is related to the conformal flat one, {tc, ~x},
where we have the same space coordinates but the conformal time tc ∈
(−∞,∞) defined as

tc =

∫
dt

a(t)
=

1

ω
ln(ωt) → a(tc) = eωtc . (4)

The corresponding line elements read

ds2 = gµν(x)dxµdxν = dt2 − (ωt)2d~x · d~x
= e2ωtc(dt2c − d~x · d~x) . (5)
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The expansion of M that can be better observed in the chart {t, ~̂x}, of
’physical’ space coordinates x̂i = ωtxi, where the line element

ds2 =
(

1− 1

t2
~̂x · ~̂x

)
dt2 + 2~̂x · d~̂x dt

t
− d~̂x · d~̂x , (6)

lays out an expanding horizon at |~̂x| = t and tends to the Minkowski space-
time when t→∞ and the gravitational sources vanish.

In M we introduce the local orthogonal non-holonomic frames defined by
the vector fields eα̂ = e

µ
α̂∂µ and the associated co-frames given by the 1-

forms ωα̂ = êα̂µdx
µ, labeled by the local indices, µ̂, ν̂, ... = 0, 1, 2, 3. Here we

use exclusively the diagonal tertrad gauge which preserves the symmetry
of M as a global one,

e0 = ∂t = e−ωtc ∂tc , ω0 = dt = eωtcdtc , (7)
ei = 1

ωt ∂i = e−ωtc ∂i , ωi = ωtdxi = eωtcdxi . (8)
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Free fields on M

The massive Dirac field ψ of mass m which satisfy the field equation
(ED −m)ψ = 0 where

ED = iγ0∂t + i
1

ωt
γi∂i +

3i

2

1

t
γ0 −m. (9)

The term of this operator depending on the Hubble function ȧ
a = 1

t can be

removed at any time by substituting ψ → (ωt)−
3
2ψ.

The fundamental solutions of the Dirac equation can be derived in the chiral
representation (with diagonal γ5) where we have to look for solutions of the
form

U~p,σ(t, ~x) = [2πa(t)]−
3
2ei~p·~xUp(t)uσ (10)

V~p,σ(t, ~x) = [2πa(t)]−
3
2e−i~p·~xVp(t)vσ (11)
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depending on the diagonal matrix-functions

Up(t) = diag
(
u+
p (t), u−p (t)

)
, (12)

Vp(t) = diag
(
v+
p (t), v−p (t)

)
, (13)

whose matrix elements are functions only on t and p = |~p|, determining the
time modulation of the fundamental spinors.

The spin part is encapsulated in the spinors of the momentum-helicity basis
that in the chiral representation of the Dirac matrices read [29]

uσ =
1√
2

(
ξσ(~p)
ξσ(~p)

)
vσ =

c√
2

(
−ησ(~p)
ησ(~p)

)
(14)

where ξσ(~p) and ησ(~p) = iσ2ξ
∗
σ are the Pauli spinors of the helicity basis

corresponding to the helicities σ = ±1
2 as given in the Appendix A.
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The fundamental spinors are solutions of the free Dirac equation whether
the modulation functions u±p (t) and v±p (t) satisfy the first order differential
equations (

i∂t ±
2σp

ωt

)
u±p (t) = mu∓p (t) , (15)(

i∂t ∓
2σp

ωt

)
v±p (t) = −mv∓p (t) , (16)

in the chart with the proper time. The solutions of these systems must
satisfy the charge-conjugation symmetry [19],

v±p (t) =
[
u∓p (t)

]∗
, (17)

and the normalization conditions

|u+
p |2 + |u−p |2 = |v+

p |2 + |v−p |2 = 1 . (18)
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that determine the definitive form of the fundamental spinors,

U~p,σ(x) =

√
mt

π

ei~p·~x

[2πωt]
3
2

(
Kσ−i pω (im t) ξσ(~p)

Kσ+i pω
(im t) ξσ(~p)

)
(19)

V~p,σ(x) =

√
mt

π

e−i~p·~x

[2πωt]
3
2

(
Kσ−i pω (−im t) ησ(~p)

−Kσ+i pω
(−im t) ησ(~p)

)
,

(20)

according to the identity (77).

The fundamental spinors (19) and (20) form the momentum-helicity basis in
which the general solutions of the Dirac equation can be expanded as

ψ(t, ~x ) = ψ(+)(t, ~x ) + ψ(−)(t, ~x )

=

∫
d3p
∑
σ

[U~p,σ(x)a(~p, σ) + V~p,σ(x)b†(~p, σ)] . (21)
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After quantization, the particle (a,a†) and antiparticle (b,b†) operators
satisfy the canonical anti-commutation relations [19],

{a(~p, σ),a†(~p ′, σ′)} = {b(~p, σ),b†(~p ′, σ′)}
= δσσ′δ

3(~p− ~p ′) . (22)

Then ψ becomes a quantum free field that can be used in perturbation for
calculating physical effects.

The free Maxwell field Aµ can be written easily in the conformal chart
taking over the well-known results in Minkowski space-time since the free
Maxwell equations are conformally invariant. The electromagnetic gauge
does not have this property such that we are forced to adopt the Coulomb
gauge with A0(x) = 0 as in Refs. [21, 17], remaining with the free Maxwell
equations

1√
g(x)

(∂2
tc −∆)Ai(x) = 0 , (23)
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which can be solved in momentum-helicity basis where we obtain the
expansion

Ai(x) =

∫
d3k
∑
λ

[
µ~k,λ; i

(x)α(~k, λ) + µ~k,λ; i
(x)∗α†(~k, λ)

]
, (24)

in terms of the modes functions,

µ~k,λ; i
(tc, ~x ) =

1

(2π)3/2

1√
2k
e−iktc+i

~k·~x εi(~k, λ) , (25)

depending on the momentum ~k (k = |~k|) and helicity λ = ±1 of the
polarization vectors ~ελ(~k) in Coulomb gauge (given in Appendix A). Hereby
we obtain the mode functions in the FLRW chart

µ~k,λ; i
(t, ~x ) =

1

(2π)3/2

1√
2k

(ωt)−i
k
ω ei

~k·~x εi(~k, λ) . (26)
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First order QED amplitudes

The QED in Coulomb gauge on M can be constructed following step by
step the method we used for the de Sitter QED [17]. The massive Dirac
field ψ and the electromagnetic potential Aµ are minimally coupled to the
gravity of M , interacting between themselves according to the QED action

S =

∫
d4x
√
g [LD(ψ) + LM (A) + Lint(ψ,A)] , (27)

given by the Lagrangians of the Dirac (D) and Maxwell (M) free fields which
have the standard form as in Ref. [17], while the interacting part,

Lint(ψ,A) = −e0ψ̄(x)γµ̂eνµ̂(x)Aν(x)ψ(x) , (28)

corresponds to the minimal electromagnetic coupling given by the electrical
charge e0.

The quantization of the entire theory and the perturbation procedure based
on the reduction formalism can be done just as in the de Sitter case [17]
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exploiting usual in− out initial/final conditions in the conformal chart where
tc ∈ (−∞,∞). Finally, we obtain a perturbation procedure that allows us
to calculate the transition amplitudes between two free states, α → β, that
can be rewritten in the FLRW chart as

〈out, β|in, α〉 = 〈β|Te(−i
∫
d3x
√
g
∫∞
0 dtLint)|α〉 (29)

where Lint given by Eq. (28) is expressed in terms of free fields multiplied
in the chronological order [27].

There are two types of processes involving particles, electrons of
parameters e−(~p, σ), antiparticles, e+(~p′, σ′) and photons γ(~k, λ).

1. The first type is when in and out states are charged as, for example, in
the case of the photon adsorption e− + γ → e− whose amplitude reads

A
σ,λ
σ′ (~p,~k; ~p′) = 〈e−(~p′, σ′)|S1|e−(~p, σ), γ(~k, λ)〉

= −ie0

∫
d4x(ωt)2U~p ′,σ′(x) γiµ~k,λ; i

(x)U~p,σ(x) . (30)
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When the photon is adsorbed by a positron we have to replace U~p ′,σ′ →
V~p,σ and U~p,σ → V~p ′,σ′. Moreover, if we replace µi → µ∗i then we obtain
the amplitudes of the transitions e−→ e−+γ and respectively e+→ e++γ
in which a photon is emitted.

2. The second type of amplitudes involves only neutral in and out states as
in the cases of the pair creation, γ → e−+ e+, and annihilation, e−+ e+→
γ, when we find the related amplitudes

Aλσ,σ′(
~k; ~p, ~p′) = 〈e−(~p, σ), e+(~p′, σ′)|S1|γ(~k, λ)〉
= −〈γ(~k, λ)|S1|e−(~p, σ), e+(~p′, σ′)〉∗

= −ie0

∫
d4x(ωt)2U~p,σ(x) γiµ~k,λ; i

(x)V~p ′,σ′(x) . (31)

If we replace µi → µ∗i in Eq. (31) then we obtain the amplitudes of the
creation of leptons from vacuum, vac→ e+ + e−+ γ or their annihilation to
vacuum, e+ + e− + γ → vac.
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In what follows we focus on the amplitudes (30) and (31) that can be
calculated by using the previous results and taking into account that we
work with the chiral representation of the Dirac matrices. Thus we obtain

A
σ,λ
σ′ (~p,~k; ~p′) = i

e0m

π

ω−i
k
ω−1

√
2k (2π)

3
2

× δ3(~p + ~k − ~p′) Π
σ,λ
σ′ (~p,~k; ~p′) I−σ′,σ(p′, p, k) , (32)

Aλσ,σ′(
~k; ~p, ~p′) = i

e0m

π

ω−i
k
ω−1

√
2k (2π)

3
2

× δ3(~p + ~p′ − ~k) Πλσ,σ′(
~k; ~p, ~p′) I+

σ,σ′(p, p
′, k) , (33)

where we separate the terms depending on polarizations,

Π
σ,λ
σ′ (~p,~k; ~p′) = ξ+

σ′(~p
′)σiεi(~k, λ)ξσ(~p) , (34)

Πλσ,σ′(
~k; ~p, ~p′) = ξ+

σ (~p)σiεi(~k, λ)ησ′(~p
′) , (35)
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from the time integrals

I±σ,σ′(p, p
′, k) =

∫ ∞
0

dtK±σ,σ′(p, p
′, k; t) , (36)

whose time-dependent functions

K±σ,σ′(p, p
′, k; t) = ti

k
ω

[
Kσ+i pω

(−imt)K
σ′−ip′ω

(∓imt)

±Kσ−i pω(−imt)K
σ′+ip

′
ω

(∓imt)
]
, (37)

result from Eqs. (19) and (20).

These integrals have remarkable properties,

I±σ,σ′(p, p
′, k) = ±I±−σ,−σ′(p, p

′, k) = ±I±σ,σ′(−p,−p
′, k)

= I±σ,−σ′(p,−p
′, k) = I±−σ,σ′(−p, p

′, k) , (38)

since Kν = K−ν, and can be solved according to Eq. (79) obtaining,
after a few manipulations, the following quantities we need for deriving the

18



transition probabilities:∣∣∣I+
±1

2,±
1
2

(p, p′, k)

∣∣∣ = ∆(p, p′, k) e
πk
2ω , (39)∣∣∣I+

∓1
2,±

1
2

(p, p′, k)

∣∣∣ = ∆(p,−p′, k) e
πk
2ω , (40)∣∣∣I−±1

2,±
1
2

(p, p′, k)

∣∣∣ = ∆(p, p′, k) e
πk
2ω

×
∣∣∣∣sinh

πp

ω
± p′ − p

k
cosh

πp

ω

∣∣∣∣ , (41)∣∣∣I−∓1
2,±

1
2

(p, p′, k)

∣∣∣ = ∆(p,−p′, k) e
πk
2ω

×
∣∣∣∣sinh

πp

ω
± p + p′

k
cosh

πp

ω

∣∣∣∣ , (42)
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where

∆(p, p′, k) =
π

3
2
√
ω

2m

[
k sinhkπω

k2 − (p− p′)2

]1
2

×
[

sinh

(
π(k − p + p′)

2ω

)
sinh

(
π(k + p− p′)

2ω

)
× cosh

(
π(k + p + p′)

2ω

)
cosh

(
π(k − p− p′)

2ω

)]−1
2

.

(43)

We observe that the function ∆(p, p′, k) satisfies

∆(p, p′, k) = ∆(−p,−p′, k) = ∆(p, p′,−k) , (44)

being singular for k ± (p − p′) = 0. Note that the function ∆(p,−p′, k) is
singular only for k = (p + p′) since k, p, p′ ∈ R+.
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Rates and probabilities

The transition amplitudes of processes α→ β have the general form

Aαβ = 〈out β|in α〉 = δ3(~pα − ~pβ)MαβIαβ , (45)

laying out the Dirac δ-function of the momentum conservation but without
conserving the energy. Thus the time integration gives the quantity

Iαβ =

∫ ∞
0

dtKαβ(t) , (46)

instead of the familiar δ(Eα−Eβ) we meet in the flat case when the energy
is conserved. This could lead to some difficulties when we calculate the
transition probabilities.

We remind the reader that in the usual QED on Minkowski space-time the
transition probabilities are derived from amplitudes satisfying the energy-
momentum conservation,

Âαβ = δ(Eα − Eβ)δ3(~pα − ~pβ)M̂αβ , (47)
21



evaluating δ(0)δ3(0) ∼ 1
(2π)4

TV in terms of the total volume V and
interaction time T such that one obtains the probability per unit of volume
and unit of time as [28, 27]

P̂αβ =
|Âαβ|2

V T
= δ(Eα − Eβ)δ3(~pα − ~pβ)

|M̂αβ|2

(2π)4
. (48)

In fact this is the transition rate per unit of volume we refer here simply as
rate denoted by R.

In our QED on M the rates must be derived in another manner since the
amplitudes have here different forms as in Eq. (45). Therefore, we introduce
first the time-dependent amplitudes

Aαβ(t) = δ3(~pα − ~pβ)MαβIαβ(t)

= δ3(~pα − ~pβ)Mαβ

∫ t

0

dt′Kαβ(t′) , (49)

that can be rewritten in terms of the conformal time asAαβ(tc) = Aαβ[t(tc)].
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Then we define the transition rate according to Eq. (4) as

Rαβ = lim
tc→∞

1

2V

d

dtc

∣∣Aαβ(tc)
∣∣2 = lim

t→∞
ωt

2V

d

dt

∣∣Aαβ(t)
∣∣2 (50)

obtaining the final result

Rαβ = δ3(~pα − ~pβ)
|Mαβ|2

(2π)3
|Iαβ|Kαβ (51)

where
Kαβ = lim

t→∞

∣∣ωtKαβ(t)
∣∣ . (52)

Note that the basic definition (50) is given in the conformal chart where the
in and out states can be defined correctly in the domain −∞ < tc < ∞,
as in the flat case or in our de Sitter QED.

Thus for calculating the transition rates of the processes under
consideration here we need to calculate the limits (52) of the functions (37).
Fortunately, this can be done easily since the modified Bessel functions
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have a simple asymptotic behavior as in Eq. (78). Thus we obtain the
dramatic result,

lim
t→∞

ωt

∣∣∣K+
σ,σ′(p, p

′, k; t)

∣∣∣ =
πω

m
, (53)

lim
t→∞

ωt

∣∣∣K−σ,σ′(p, p′, k; t)

∣∣∣ = 0 , (54)

which shows that the rates of all the processes involving charged states
vanish, remaining only with the transitions between neutral states.

Moreover, we observe that in the flat limit, for ω → 0, all the transition
rates vanishes in the first order of perturbations as was expected since in
special relativity these processes are forbiden by the energy-momentum
conservation [27].

Now we focus on the remaining transition, γ(~k, λ) → e−(~p, σ) + e+(~p′, σ′)
for which we obtain the rate
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Rλσ,σ′(~k; ~p, ~p′) =
e2

0

(2π)7

mω

k
δ3(~p + ~p′ − ~k)

× |Πλσ,σ′(~k; ~p, ~p′)|2 |I+
σ,σ′(p, p

′, k)| , (55)

which allows us to derive the probability per units of volume and time
integrating over ~k. Thus we obtain

Pλσ,σ′(~p, ~p
′) =

∫
d3k

(2π)3
Rλσ,σ′(~k; ~p, ~p′) =

e2
0

(2π)10

mω

k(θ)

× |Πλσ,σ′(~p + ~p′; ~p, ~p′)|2 |I+
σ,σ′(p, p

′, k(θ))| , (56)

where

k(θ) =
∣∣~p + ~p′

∣∣ =

√
p2 + 2pp′ cos θ + p′2 (57)

depend on the angle θ between ~p and ~p′.

For studying these probabilities we need to calculate the polarization terms
which are extremely complicated in an arbitrary geometry. Therefore, we
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Figure 1: Pair production in the frame {e} (I) for p > p′: (I A) θ = 0→ k = p + p′, σ′ = σ and
λ = 2σ, (I B) θ = π→ k = p′ − p, σ′ = −σ and λ = 2σ, and (II) for p < p′ : (II A) θ = 0→
k = p + p′, σ′ = σ and λ = 2σ, (II B) θ = π→ k = p′ − p and σ′ = −σ and λ = −2σ.
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consider a particular frame {e} = {~e1, ~e2, ~e3} in the momentum space
where ~k = ~p + ~p′ = k(θ)~e3 and the vectors ~p and ~p′ are in the plane
{~e1, ~e3} (as in Fig. 1) having the spherical coordinates ~p = (p, α, 0) and
~p ′ = (p′, β, π) such that

θ = α + β , (58)
p sinα = p′ sin β . (59)

In this geometry the polarization vectors take the simple form ~ε±1(~k) =
1√
2
(±~e1 − i~e2) that allows us to derive the polarization matrices

Π̂λ=1 =
√

2

(
cos α2 cos β2 cos α2 sin β

2

sin α
2 cos β2 sin α

2 sin β
2

)
, (60)

Π̂λ=−1 =
√

2

(
sin α

2 sin β2 sin α2 cos β2
cos α2 sin β2 cos α2 cos β2

)
, (61)

whose matrix elements,
∣∣∣Π̂λσ,σ′∣∣∣ are the absolute values of the polarization

terms in the particular frame {e}. Now we can choose the free parameters
27



p, p′ and θ since the angles we need for calculating the polarization matrix
can be deduced as

α = arctan

(
p′ sin θ

p + p′ cos θ

)
, (62)

β = θ − arctan

(
p′ sin θ

p + p′ cos θ

)
, (63)

when p > p′, as it results from Eqs. (58) and (59). For p < p′ we obtain
similar relations changing α ↔ β and p ↔ p′ while for p = p′ we have
α = β = θ

2 . Then, according to Eqs. (39) and (40) we obtain the definitive
result in the frame {e} where the probability per unit of volume and unit of
time,

Pλσ,σ′(p, p
′, θ) =

e2
0

(2π)10

mω

k(θ)
e
πk(θ)
2ω

× Π̂2
σ,σ′∆(p, sign(σσ′)p′, k(θ)) , (64)
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depends only on polarization and the free parameters (p, p′, θ) through the
polarization term and the function ∆(p, p′, k) defined by Eq. (43).

A similar result can be obtained for the process of lepton creation, vac →
γ + e− + e+, with similar parameters, whose rates or probabilities comply
with the general rule

Pvac→γ+e−+e+(p, p′, θ)

Pγ→e−+e+(p, p′, θ)
' e−

πk(θ)
ω . (65)

Thus we remain only with the processes of pair creation and lepton creation
or with the combined leptonic creation vac→ γ + e− + e+ → (e− + e+) +
e− + e+ since the transitions between charged states are forbidden.

Note that the inverse processes of pair annihilation, e−+ e+→ γ, or lepton
annihilation to vacuum, γ + e− + e+ → vac cannot be produced since it is
less probable that two or three particles meet each other spontaneously.
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Figure 2: The singular behavior of the functions ∆(p, p′, k(θ)) (left panel) and ∆(p,−p′, k(θ))
(right panel) for p = 0.01ω and p′ = 0.03ω.
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Graphical analysis

We observe first that here we cannot speak about the polarization
conservation since we work in the momentum-helicity basis. Nevertheless,
there are some particular positions in which the momenta have the same
direction and, consequently, the polarizations must be conserved as spin
projections on the same direction. These positions are obtained either for
θ = 0, as in the panels I A and II A of Fig. 1, when we have

α = β = 0→ p′ = p + k , λ = σ + σ′ , (66)

or for θ = π when we find two different cases presented in the panels II A
and respectively II B. In the first one (I B) we set p > p′ and consequently

α = 0 , β = π → k = p− p′ , λ = σ − σ′ , (67)

while in the second one (II B) the situation is reversed such that p < p′ and

α = π , β = 0→ k = p′ − p , λ = σ′ − σ . (68)
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Note that when p = p′ we remain only with the parallel case (I A=II A) since
the anti-parallel equal momenta lead to k = 0 when the photon of the in
state disappears.

Now we expect to recognize the above selection rules by plotting the
probabilities (64) versus θ for fixed values of the momenta p and p′. The
unpleasant surprise is of finding a wrong behaviors just for the angles θ = 0
or θ = π for which the selection rules require the probabilities to vanish
if the polarizations are not conserved. This is because of the function
∆(p, p′, k(θ)) which becomes singular for k± (p− p′) = 0 having the profile
plotted in Fig. 2.

Thus we meet again the sickness of the perturbation procedures leading
to singularities or violation of the conservation rules on some particular
directions.

In order to extract the physical information we need to remove these effects
resorting to the method of Yennie et al. [22] of constructing the reduced
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Figure 3: The effect of the reduction procedure: the original (dashed lines) and reduced (solid
lines) probabilities versus θ for different polarizations and p = 0.05ω and p′ = 0.02ω.
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amplitudes by multiplying the calculated one by suitable trigonometric
functions. Thus, for example, the singularity at θ = 0 of the scattering
amplitudes of various scattering processes can be removed by multiplying
the amplitude with (1− cos θ)n where n gives the reduction order.

In the case of our amplitudes the reduction of the first order, with n = 1, is
enough for eliminating the singularities in θ = 0 and θ = π if we define the
reduced probabilities as

RedPλ=±2σ
σ,σ (p, p′, θ) = Pλ=±2σ

σ,σ (p, p′, θ) cos4 θ

2
, (69)

RedPλ=±2σ
σ,−σ (p, p′, θ) = Pλ=±2σ

σ,−σ (p, p′, θ) sin4 θ

2
. (70)

Now we can verify that these match perfectly with the selection rules (66)-
(68) by plotting them on the whole domain θ ∈ [0, π] as in Figs. 3 and
4. Moreover, we observe that the reduction procedure does not affect the
physical content since for the angles θ = 0 and θ = π for which the function
∆ is regular we have RedPλσ,σ′ = Pλσ,σ′ as we see in Fig. 3. Thus we can
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conclude that the reduction procedure is correct helping us to understand
the physical behavior of the analyzed process.

On the other hand, we must specify that another problem is the divergence
at p ∼ p′ = 0. Indeed, as we see in Fig. 4, the reduced probabilities
increase when the momenta p and p′ are decreasing such that for vanishing
momenta the probabilities diverge,

lim
p→0
p′→0

Pλσ,σ′ = lim
p→0
p′→0

RedPλσ,σ′ =∞ . (71)

This unwanted effect is somewhat analogous to the infrared catastrophe of
the usual QED and could be of interest in a future procedure of the vertex
renormalization.

Finally we note that the dependence on the parameter ω is almost trivial
since for large values of ω the probabilities are increasing linearly with this
parameter.
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Figure 4: Reduced probabilities versus θ for different polarizations and momenta: (1) p =
0.002ω and p′ = 0.001ω (2) p = 0.02ω and p′ = 0.01ω. (3) p = 0.2ω and p′ = 0.1ω
(4) p = 2ω and p′ = ω
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Concluding remarks

We visited here for the first time the world of the quantum fields on the
spatially flat FLRW space-time with a Milne-type modulation factor (denoted
here by M ).

The first impression was that this manifold, born from a time singularity,
might produce new spectacular physical effects but, in fact, our calculations
show that, at least from the point of view of the quantum theory, this space-
time behaves normally producing similar effects as the de Sitter expanding
universe [17].

The only notable new feature is that the first order transitions between
charged states are forbidden but we cannot say if this is specific to this
geometry as long as we do not have other examples.
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From the technical point of view, M and the de Sitter space-time have
complementary behaviors as we can see from the next self-explanatory
table,

M de Sitter

t 0 < t = 1
ωe
ωtc <∞ −∞ < t <∞

tc −∞ < tc <∞ −∞ < tc = − 1
ωe
−ωt < − 1

ω
a(t) ωt eωt

a(tc) eωtc − 1
ωtc

u±p K1
2∓i

2σp
ω

(imt) K1
2∓i

m
ω

(iptc)

where we denote by ω the free parameter of M and the Hubble constant of
the de Sitter expanding portion [26]. Thus we have at least two related
examples that will help us to construct the perturbative QFT on curved
backgrounds.
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APPENDIX A: Polarization

The Pauli spinors of the momentum-helicity basis, ξσ(~p), of helicity σ = ±1
2, satisfy the

eigenvalues problem (~p · ~S) ξσ(~p) = σ p ξσ(~p) where Si = 1
2σi are the spin operators expressed

in terms of Pauli matrices. They have the form

ξ1
2
(~p) =

√
p + p3

2p

(
1

p1+ip2

p+p3

)
, (72)

ξ−1
2
(~p) =

√
p + p3

2p

(
−p1+ip2
p+p3

1

)
. (73)

The antiparticle spinors are defined usually as ησ(~p) = iσ2ξσ(~p)∗ [27, 29] in order to satisfy
(~p · ~S) ησ(~p) = −σ p ησ(~p).

The polarization of the free Maxwell field is given by the polarization vectors ~ελ(~k) which have
c-number components. Here we consider only the circular polarization [27] with ~ε±1(~k) =
1√
2
(±~e1 + i~e2), in a three-dimensional orthogonal local frame {~ei} where ~k = k~e3.
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APPENDIX B: Modified Bessel functions

According to the general properties of the modified Bessel functions, Iν(z) andKν(z) = K−ν(z)
[30], we deduce that those used here, Kν±(z), with ν± = 1

2 ± iµ are related among themselves
through

H(1,2)
ν (z) = ∓2i

π
e∓

i
2πνKν(∓iz) , z ∈ R . (74)

The functions used here, Kν±(z) with ν± = 1
2 ± iµ (µ ∈ R), are related among themselves

through
[Kν±(z)]∗ = Kν∓(z∗) , ∀z ∈ C , (75)

satisfy the equations (
d

dz
+
ν±
z

)
Kν±(z) = −Kν∓(z) , (76)

and the identities
Kν±(iz)Kν∓(−iz) + Kν±(−iz)Kν∓(iz) =

π

|z|
, (77)

that guarantees the correct orthonormalization properties of the fundamental spinors. For z →
∞ these functions behave as [30]

Iν(z)→
√

π

2z
ez , Kν(z)→ K1

2
(z) =

√
π

2z
e−z , (78)
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regardless the index ν.

Moreover, here we use the integral (6576-4) of Ref. [31] with b = ±a,∫ ∞
0

dx x−λKµ(ax)Kν(±ax) =
(±)ν 2−2−λaλ−1

Γ(1− λ)

× Γ

(
1− λ + µ + ν

2

)
Γ

(
1− λ− µ + ν

2

)
× Γ

(
1− λ + µ− ν

2

)
Γ

(
1− λ− µ− ν

2

)
. (79)
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