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The talk is based on the following papers
I M. Blagojević and B. Cvetković, Entropy in
Poincaré gauge theory: Hamiltonian approach,
Phys. Rev. D 99, 104058 (2019)

I M. Blagojević and B. Cvetković, Hamiltonian
approach to black hole entropy: Kerr-like
spacetimes, Phys. Rev. D 100, 044029 (2019)
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I Already in 1960s, Kibble and Sciama proposed a new
theory of gravity, the Poincaré gauge theory (PG), based
on gauging the Poincaré group of spacetime symmetries.

I PG is characterized by a Riemann-Cartan (RC) geometry
of spacetime, in which both the torsion and the curvature
are essential ingredients of the gravitational dynamics.

I Nowadays, PG is a well-established approach to gravity,
representing a natural gauge-field-theoretic extension of
general relativity (GR).

I In the past half century, many investigations of PG have
been aimed at clarifying different aspects of both the
geometric and dynamical roles of torsion. In particular,
successes in constructing exact solutions with torsion
naturally raised the question of how their conserved
charges are influenced by the presence of torsion.
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I We shall reconsider the notion of conserved charge in the
Hamiltonian formalism, as it represents the most natural
basis for the main subject of the present talk, the influence
of torsion on black hole entropy.

I The expressions for the conserved charges in PG were
first found for asymptotically flat solutions. In the
Hamiltonian approach to PG the conserved charges are
represented by a boundary term, defined by requiring the
variation of the canonical gauge generator to be a
well-defined (differentiable) functional on the phase space.

I A covariant version of the Hamiltonian approach,
introduced later by Nester, turned out to be an important
step in understanding the conservation laws. This was
clearly demonstrated by Hecht and Nester, in their analysis
of the conserved charges for asymptotically flat or (A)dS.
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I Despite an intensive activity in exploring the notion of
conserved charges in the generic four-dimensional (4D)
PG, systematic studies of black hole entropy in the
presence of torsion have been largely neglected so far.

I One should mention here an early and general proposal by
Nester which did not prove to be quite successful.

I Later investigations were restricted to EC theory, which is
certainly not sufficient to justify any conclusion on the
general relation between torsion and entropy.

I In 3D gravity, black hole entropy is well understood for
solutions possessing the asymptotic conformal symmetry.

I The physics of black holes is an arena where
thermodynamics, gravity, and quantum theory are
connected through the existence of entropy as an intrinsic
dynamical aspect of black holes.
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Entropy in Poincaré gauge theory: Hamiltonian approach



Introduction PG dynamics and surface gravity Hamiltonian analysis of PG Entropy and torsion Examples Concluding remarks

I In the 1990s, understanding of the classical black hole
entropy reached a level that can be best characterized by
Wald’s words: “Black hole entropy is the Noether charge" .

I The question that we wish to address is whether such a
challenging idea can improve our understanding of black
hole entropy in PG.

I We constructed the canonical gauge generator in the first
order formulation of PG, which improved form is used to
obtain the variational equation for the asymptotic canonical
charge, located at the spatial 2-boundary at infinity.

I Following the idea that “entropy is the canonical charge at
horizon," we are led to define black hole entropy by the
same variational equation, located at black hole horizon.

I The differentiability of the gauge generator guarantees the
validity of the first law of black hole thermodynamics.
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Notations and conventions

I Our conventions are as follows.
I The greek indices (µ, ν, . . . ) refer to the coordinate frame,

with a time-space splitting expressed by µ = (0, α).
I The latin indices (i , j , . . . ) refer to the local Lorentz frame.
I bi is the orthonormal tetrad (1-form), hi is the dual basis

(frame), with hi cbk = δk
i , and the Lorentz metric is

ηij = (1,−1,−1,−1).
I The volume 4-form is ε̂ = b0b1b2b3, the Hodge dual of a

form α is ?α, with ?1 = ε̂, and the totally antisymmetric
tensor is defined by ?(bibjbmbn) = εijmn, where ε0123 = +1.

I The exterior product of forms is implicit.
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A brief account of PG

I Basic dynamical variables of PG are the tetrad field bi and
the spin connection ωij (1-forms), the gauge potentials
related to the translation and the Lorentz subgroups of the
Poincaré group, respectively. The corresponding field
strengths are the torsion T i = dbi + ωi

mbm and the
curvature R ij = dωij + ωi

mω
mj (2-forms).

I Varying the gravitational Lagrangian LG = LG(bi ,T i ,R ij)
(4-form) with respect to bi and ωij yields the gravitational
field equations in vacuum. After introducing the covariant
field momenta, Hi := ∂LG/∂T i and Hij := ∂LG/∂R ij , and
the associated energy-momentum and spin currents,
Ei := ∂LG/∂bi and Eij := ∂LG/∂ω

ij , the equations read

δbi : ∇Hi + Ei = 0 , (2.1a)
δωij : ∇Hij + Eij = 0 . (2.1b)
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A brief account of PG

I Assuming the gravitational Lagrangian LG to be at most
quadratic in the field strengths and parity invariant,

LG = −?(a0R +2Λ)+T i
3∑

n=1

?(an
(n)Ti)+

1
2

R ij
6∑

n=1

?(bn
(n)Rij) ,

the gravitational field momenta take the form

Hi = 2
3∑

m=1

?(am
(m)Ti) , Hij = −2a0

?(bibj) + H ′ij ,

H ′ij := 2
6∑

n=1

?(bn
(n)Rij) .

I Here, (a0,am,bn) are the Lagrangian parameters, with
16πa0 = 1, Λ is a cosmological constant, and (m)Ti and
(n)Rij are irreducible parts of torsion and curvature.
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Surface gravity

I A black hole can be described as a region of spacetime
which is causally disconnected from the rest of spacetime.

I The boundary of a black hole is a null hypersurface, known
as the event horizon.

I Let us consider a black hole characterized by the existence
of a Killing vector field ξ. A null hypersurface to which the
Killing vector is normal, is called the Killing horizon (K). As
a consequence, ξ2 := gµνξµξν = 0 on K. The gradient
∂µ(ξ2) is also normal to K and it must be proportional to ξµ,

∂µ(ξ2) = −2κξµ , (2.2)

where the scalar function κ is known as surface gravity.
I One can show, without making use of any field equations,

that for a wide class of stationary black holes (systems in
“equilibrium"), the Killing horizon coincides with event
horizon.
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Surface gravity

I The essential property of surface gravity is expressed by
the zeroth law of black hole mechanics: For a wide class of
stationary black holes, surface gravity is constant over the
entire event horizon.

I Since null geodesics and Killing vector fields are purely
metric notions, they can be directly transferred to PG.
Thus, the form of surface gravity and the associated zeroth
law of black mechanics are also valid in PG.

I The calculation of κ should be done in coordinates that are
well defined on the outer horizon, such as ingoing
Edington-Finkelstein coordinates, where the metric reads

ds2 = N2dv2 − 2dv dr − r2dΩ2 , N = N(r) , (2.3)

while the definition (2.2) of surface gravity takes the form

∂r N2 = 2κ . (2.4)
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First order Lagrangian

I In PG, the conserved charges are determined as the
values of the (improved) canonical generators of spacetime
symmetries, associated to suitable asymptotic conditions.

I The canonical procedure is simplified by transforming the
quadratic Lagrangian into the “first order" form

LG = T iτi +
1
2

R ijρij − V (bi , τi , ρij) , (3.1)

where the gravitational potentials (bi , ωij) and “covariant
momenta" (τi , ρij), are independent dynamical variables.

I The potential V is a quadratic function of (τi , ρij) which
ensures the on-shell relations τi = Hi and ρij = Hij .

I In the tensor formalism, the Lagrangian density reads

L̃G = −1
4
εµνλρ

(
T i

µντiλρ +
1
2

R ij
µνρijλρ

)
−Ṽ(b, τ, ρ) . (3.2)
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First order Lagrangian

I The gravitational field equations (in vacuum) are obtained
by varying L̃G with respect to the independent dynamical
variables bi

µ, ω
ij
µ, τ

i
µν and ρij

µν :

∇µ (?)τi
µν − ∂Ṽ

∂bi
ν

= 0 , (3.3a)

2b[jµ
(?)τi]

µν +∇µρij
µν = 0 , (3.3b)

−(?)T iµν − ∂Ṽ
∂τiµν

= 0 , (3.3c)

−(?)R ijµν − ∂Ṽ
∂ρijµν

= 0 , (3.3d)

where we use the notation (?)τi
µν := 1

2ε
µνλρτiλρ, and

similarly for (?)ρij
µν , (?)T iµν and (?)R ijµν .
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Constraints and Hamiltonian

I Starting with the field variables ϕA = (bi
µ, ω

ij
µ, τ

i
µν , ρ

ij
µν)

and the corresponding canonical momenta
πA = (πi

µ, πij
µ,Pi

µν ,Pij
µν), one obtains the following

primary constraints:

φi
0 := πi

0 ≈ 0 , φi
α := πi

α + (?)τi
0α ≈ 0 ,

φij
0 := πij

0 ≈ 0 , φij
α := πij

α +
1
2

(?)ρij
0α ≈ 0 ,

Pi
µν ≈ 0 , Pij

µν ≈ 0 . (3.4)

The canonical Hamiltonian is found to have the form

Hc := bi
0Hi +

1
2
ωij

0Hij + τi0α
(?)T i0α +

1
2
ρij0α

(?)R ij0α + Ṽ ,

Hi := ∇α (?)τi
0α ,

Hij := 2b[jα
(?)τi]

0α +∇α (?)ρij
0α . (3.5)
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Constraints and Hamiltonian

I The total Hamiltonian reads

HT := Hc + ui
µφi

µ +
1
2

uij
µφij

µ +
1
2

v i
µνPi

µν +
1
4

v ij
µνPij

µν ,

where u’s and v ’s are canonical multipliers.
I The consistency conditions of the sure primary constraints

produces the secondary constraints

Ĥi := Hi +
∂Ṽ
∂bi

0
≈ 0 , Ĥij := Hij ≈ 0 ,

T̂ i0α := (?)T i0α +
∂Ṽ
∂τi0α

≈ 0 , R̂ij0α := (?)R ij0α +
∂Ṽ
∂ρij0α

≈ 0 ,

which correspond to certain components of the field
equations (3.3).

I The remaining primary constraints are second class.
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Constraints and Hamiltonian

I We can construct the corresponding DB and use them in
the consistency procedure on the reduced phase space:

{bi
α, τjβγ}∗ = δi

j ε0αβγ , {ωij
α, ρklβγ}∗ = δ

[i
k δ

j]
l ε0αβγ .

I The form of the total Hamiltonian is simplified:

HT = Hc +ui
0πi

0 +
1
2

uij
0πij

0 +v i
0βPi

0β +
1
2

v ij
0βPij

0β . (3.6)

I In terms of the secondary constraints Hc reads

Hc = bi
0Ĥi +

1
2
ωij

0Hij + τi0αT̂ i0α +
1
2
ρij0αR̂ij0α. (3.7)

I A phase-space functional G is a good gauge generator if it
generates the correct gauge transformations of all
phase-space variables.
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Constraints and Hamiltonian

I Relying on an explicit construction of G in 3D PG, we
display here its generalization to 4D:

G[ξ, θ] =

∫
Σ

d3x
(
G1 + G2

)
,G2 =

1
2
θ̇ijπij

0 +
1
2
θijMij ,

G1 = ξ̇µ
(

bi
µπi

0 +
1
2
ωij

µπij
0 + τ i

µβPi
0β +

1
2
ρij
µβPij

0β
)

+ ξµPµ ,

Pµ := bi
µĤi +

1
2
ωij

µHij + τ i
µβ T̂i

0β +
1
2
ρij
µβR̂ij

0β

+(∂µbi
0)πi

0 +
1
2

(∂µω
ij

0)πij
0 + (∂µτ

i
0β)Pi

0β +
1
2

(∂µρ
ij

0β)Pij
0β

−∂β
(
τ i

0µPi
0β +

1
2
ρij

0µPij
0β
)
,

Mij := Hij + 2
(

b[i0πj]
0 + ωk

[i0πkj]
0 + τ[i0γPj]

0γ + ρk
[i0γPkj]

0γ
)
.
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Entropy in Poincaré gauge theory: Hamiltonian approach



Introduction PG dynamics and surface gravity Hamiltonian analysis of PG Entropy and torsion Examples Concluding remarks

Canonical charge as a surface term at infinity

I The Hamiltonian formulation of gravity is based on the
existence of a family of spacelike hypersurfaces Σ, labeled
by the time parameter t . Each Σ is bounded by a closed
2-surface at spatial infinity, which is used to define the
asymptotic charge. When Σ is a black hole manifold, it also
possesses an “interior" boundary, the horizon, which
serves to define black hole entropy.

I In PG, conserved charges are closely related to the
canonical gauge generator G. Since G acts on dynamical
variables via the PB (or DB) operation, it should have
well-defined functional derivatives. If G does not satisfy
this requirement the problem can be solved by adding a
suitable surface term Γ∞, located at the boundary of Σ at
infinity, such that G̃ = G + Γ∞ is well defined. The value of
Γ∞ is exactly the canonical charge of the system.
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Canonical charge as a surface term at infinity

I Any particular solution of PG is characterized by a set of
asymptotic conditions. Demanding that local Poincaré
transformations preserve these conditions, one obtains
certain restrictions on the Killing-Lorentz parameters. The
restricted parameters define the asymptotic symmetry,
which is essential for the existence of conserved charges.

I We consider the variation of the gauge generator

δG =

∫
Σ

d3x(δG1 + δG2) ,

δG1 = ξµ
[
bi
µδĤi +

1
2
ωij

µδHij + τiµαδT̂ i0α +
1
2
ρijµαδR̂ij0α

]
,

δG2 =
1
2
θijδHij + R , (4.1)

where δ is the variation over the set of asymptotic states,
and R denotes regular (differentiable) terms.
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Canonical charge as a surface term at infinity

I To get rid of the unwanted δ∂µϕ terms which spoil the
differentiability of G, one can perform a partial integration,

δG1 =
1
2
ε0αβγ∂α

{
ξµ
[
bi
µδτiβγ +

1
2
ωij

µδρijβγ + 2τiµγδbi
β

+ρijµγδω
ij
β

]}
+ R , δG2 =

1
2
ε0αβγ∂α

[1
2
θijδρijβγ

]
.

I Going over to the notation of differential forms we get

δG = −δΓ∞ + R , δΓ∞ :=

∮
S∞

δB , (4.2a)

δB := (ξ cbi)δHi + δbi(ξ cHi) +
1
2

(ξ cωij)δHij +
1
2
δωij(ξ cHij)

+
1
2
θijδHij , (4.2b)

where S∞ is the boundary of Σ at infinity.
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Canonical charge as a surface term at infinity

I If the asymptotic conditions ensure Γ∞ to be a finite
solution of the variational equation (4.2), the improved
gauge generator

G̃ := G + Γ∞ (4.3)
has well-defined functional derivatives. Then, the value of
G̃ is effectively given by the value of Γ∞, which represents
the canonical charge at infinity.
(a1) In the above variational equations, the variation of Γ∞ is

defined over a suitable set of asymptotic states, keeping the
background configuration fixed.

I Nester and co-workers succeeded to explicitly construct a
set of finite expressions Γ∞. Although their approach yields
highly reliable expressions for the conserved charges, we
shall continue using the variational approach (4.2), as it
can be naturally extended to a new definition of black hole
entropy.
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Entropy as the canonical charge on horizon

I In order to interpret black hole entropy as the canonical
charge on horizon, we assume that the boundary of Σ has
two components, one at spatial infinity and the other at
horizon, ∂Σ = S∞ ∪ SH .

I Now the condition of differentiability of the canonical
generator G includes two boundary terms, the integrals of
δB = δB(ξ, θ) over S∞ and SH :

δG = −
∮

S∞

δB +

∮
SH

δB + R . (4.4)

I Here, as we already know, the first term represents the
asymptotic canonical charge,

δΓ∞ =

∫
S∞

δB . (4.5)
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Entropy as the canonical charge on horizon

I The second one defines entropy S as the canonical charge
on horizon,

δΓH :=

∮
SH

δB . (4.6)

(a2) The variation of ΓH is performed by varying the parameters
of a solution, but keeping surface gravity constant.

I Explicit form of entropy depends on two factors: dynamical
and geometric properties of a theory and specific structure
of the black hole.

I For stationary black holes in GR, the entropy formula (4.6)
takes the well-known form

δΓH = T δS , (4.7)

where T = κ/2π represents the temperature and S = πr2
+

is black hole entropy.
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Entropy as the canonical charge on horizon

I The gauge generator G is regular if and only if the sum of
two boundary terms vanishes,

δΓ∞ − δΓH = 0 , (4.8)

which is nothing but the first law of black hole
thermodynamics. Thus, the validity of the first law directly
follows from the regularity of the original gauge generator
G.

I In the framework of PG, the conserved charge is a
well-established concept which has been calculated for a
number of exact solutions. In contrast to that, much less is
known about black hole entropy.

I We shall now test our definition of black hole entropy and
the associated first law, on illustrative examples from the
family of Schwarzschild-AdS solutions.
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Riemannian Schwarzschild-AdS solution

I All exact solutions of GR are also solutions of PG.
However, certain properties of a solution may change when
we go from GR to a new dynamical environment of PG.

I We shall first discuss the case of the Riemannian
Schwarzschild-AdS black hole in PG, defined by the metric

ds2 = N2dt2−dr2

N2 −r2(dθ2+sin2 θdϕ2) , N2 := 1−2m
r

+λr2 ,

and λ > 0. The zeros of N2 determine the event horizon

λr3 + r − 2m = 0 . (5.1)

I This equation has just one real root r+, which is positive iff
m > 0, and N2 is positive in the region r > r+, where the
Schwarzschild-like coordinates are well defined.
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Riemannian Schwarzschild-AdS solution

I The surface gravity and black hole temperature are

κ =
1

2r+
(3λr2

+ + 1) , T =
κ

2π
. (5.2)

I The orthonormal tetrad is chosen in the form

b0 = Ndt , b1 =
dr
N
, b2 = rdθ , b3 = r sin θdϕ . (5.3)

I The Riemannian connection reads

ω01 = −N ′b0 , ω1c =
N
r

bc , ω23 =
cos θ

r sin θ
b3 , (5.4)

and the corresponding curvature 2-form R ij is

(6)R ij = λbibj , (1)R01 = −2m
r3 b0b1 , (1)R23 = −2m

r3 b2b3 ,

(1)RAc =
m
r3 bAbc , A = (0,1) , c = (2,3) . (5.5)
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Riemannian Schwarzschild-AdS solution

I The covariant momenta are Hi = 0 and

H01 = −2b2b3
(

a0 + 2b1
m
r3 − b6λ

)
,

H23 = −2b0b1
(

a0 + 2b1
m
r3 − b6λ

)
,

HAc = −εAcmnbmbn
(

a0 − b1
m
r3 − b6λ

)
. (5.6)

I One can show that the Riemannian Schwarzschild-AdS
spacetime is an exact solution of PG, provided that

3a0λ+ Λ = 0 . (5.7)

I Energy of the Riemannian Schwarzschild-AdS solution in
PG can be calculated from the variational formula for
ξ = ∂t and θij = 0. The result is

E = 16πA0m, A0 := a0 + λ(b1 − b6) . (5.8)
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Riemannian Schwarzschild-AdS solution

I For energy at horizon, the variational formula defines
entropy as follows:

δΓH =

∮
SH

ω01
tδH01 = 8κA0 δ(πr2

+) , (5.9a)

⇒ δΓH = T δS , S = 16πA0(πr2
+) . (5.9b)

I From the relation 2δm = κδr2
+, we have δE = δΓH , which

confirms the validity of the first law

δE = T δS . (5.10)

I The presence of the multiplicative factor A0 6= a0 shows
that entropy of the Schwarzschild-AdS black hole in PG, as
well as the first law, agrees with the corresponding result
for diffeomorphism invariant Riemannian theories.

I The GR limit is recovered for b1 = b6 = 0, A0 = a0 and
16πa0 = 1.
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Schwarzschild-AdS solutions with torsion

I One of the first spherically symmetric solutions of PG has
been constructed by Baekler. The metric of the Baekler
solution is of the Schwarzschild-AdS form. The ansatz for
torsion is assumed to be O(3) invariant:

T 0 = T 1 = fb0b1 , T c = −f (b0 − b1)bc , (5.1)

f := − m
r2N

.

I One can now calculate the Riemann-Cartan connection

ω01 = −(N ′ + f )b0 + fb1 , ω0c = −fbc ,

ω1c =

(
N
r
− f
)

bc , ω23 =
cos θ

r sin θ
b3 . (5.2)

I The curvature 2-form reads
(6)R ij = λbibj , (4)RAc =

λm
rN2 (b0 − b1)bc .
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Schwarzschild-AdS solutions with torsion

I Dynamics is determined by von der Heyde Lagrangian

LG = a1T i?((1)Ti − 2 (2)Ti + (3)Ti) +
1
2

b1R ij?Rij , (5.3)

I The field equations imply 2λb1 = −a1 , while:

H01 = −a1b2b3 , H23 = −a1b0b1 ,

H02 = a1b1b3 − a1
m

rN2 (b0 − b1)b3 ,

H03 = −a1b1b2 + a1
m

rN2 (b0 − b1)b2 ,

H12 = −a1b0b3 + a1
m

rN2 (b0 − b1)b3 ,

H13 = a1b0b2 − a1
m

rN2 (b0 − b1)b2 ,

H0 = −H1 = 4a1
m

r2N
b2b3 . (5.4)
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Schwarzschild-AdS solutions with torsion

I Energy of the solution is proportional to m:

E = 16πa1m . (5.5)

I Entropy is calculated from the variational equation:

bi
tδHi = −4

[
Nδ(fr2)

]
r+
· 4πa1 ,

1
2
ωij

tδHij = ω01
tδH01 = (κ+ Nf×)δr2

+ · 4πa1

1
2
δωijHijt =

[
− 2fr2δN + 2Nδ(fr2)− Nf×δr

2
]

r+

· 4πa1 .

I Summing up these terms we get:

δΓH = 8πa1κδr2
+ = T δS , S := 16πa1δ(πr2

+) . (5.6)

I Here, the torsion sector gives a nontrivial contribution to
entropy, so dynamical content of the result is quite different
than in GR.
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Schwarzschild-AdS solutions with torsion

I Teleparallel gravity (TG) is a subcase of PG, defined by the
vanishing Riemann-Cartan curvature, R ij = 0. Choosing
the related spin connection to vanish, ωij = 0, the tetrad
field remains the only dynamical variable, and torsion takes
the form T i = dbi . The general (parity invariant) TG
Lagrangian has the form

LT := a0T i ?
(

a1
(1)Ti + a2

(2)Ti + a3
(3)Ti

)
. (5.7a)

I In physical considerations, a special role is played by a
special one-parameter family of TG Lagrangians, defined
by a single parameter γ as

a1 = 1 , a2 = −2 , a3 = −1/2 + γ . (5.7b)

I This family represents a viable gravitational theory for
macroscopic matter, empirically indistinguishable from GR.
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Schwarzschild-AdS solutions with torsion

I Every spherically symmetric solution of GR is also a
solution of the one-parameter TG. In particular, this is true
for the Schwarzschild-AdS spacetime. Since (3)Ti = 0, the
covariant momentum H i does not depend on γ:

H0 =
2a0

r sin(θ)

[
cos(θ)b1b3 − 2N sin(θ)b2b3

]
,

H1 =
2a0 cos(θ)

r sin(θ)
b0b3 , H2 = −2a0

r
(rN ′ + N)b0b3 ,

H3 =
2a0

r
(rN ′ + N)b0b2 . (5.8)

I The energy of the Schwarzschild-AdS solution in TG is

E = m . (5.9)
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Schwarzschild-AdS solutions with torsion

I Our approach to entropy yields (integration implicit)

bi
tδHi =

[
NδH0

]
r+

= −16πa0
[
Nδ(Nr)

]
r+

= 0 ,

biδHit =
[
b2δH2t + b3δH3t

]
r+

= 8πa0 · κδ(r2
+) ,

where we used NN ′ = κ and [NδN]r+ = 0. Thus, with
16πa0 = 1, one obtains

δΓH = T δS , S = πr2
+ . (5.10a)

The identity 2δm = κδr2
+ confirms the validity of the first law

δE = T δS . (5.11)
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I We investigated the notion of entropy in the general (parity
preserving) four-dimensional PG. Our approach was based
on the idea that black hole entropy can be interpreted as
the conserved charge on horizon.

I We constructed the canonical generator G of gauge
symmetries as an integral over the spatial section Σ of
spacetime, which has to be a regular (differentiable)
functional on the phase space. The regularity can be
ensured by adding to G a suitable surface term Γ∞ defined
on the boundary of Σ at infinity.

I The form of Γ∞ is determined by the variational equation
and its value defines the asymptotic charge.

I For a black hole solution, Σ has two boundaries, one at
infinity and the other at horizon. The condition of regularity
of G includes two boundary terms, Γ∞ and ΓH .
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I The new boundary term ΓH , defines entropy as the
canonical charge on horizon. The regularity of G
represents just the first law of black hole thermodynamics.

I We tested our results on three vacuum solutions of the
Schwarzschild-AdS type. For Riemannian SAdS geometry
as a solution of PG, we found that both energy and entropy
differ from the GR expressions by a multiplicative factor.
The study of Baekler’s solution reveals new dynamical
features of PG, the existence of nontrivial contributions to
energy and entropy stemming from both the torsion and
the curvature sectors. We successfully applied our
approach to the teleparallel gravity, where curvature
vanishes and entropy is produced solely by torsion.

I An additional test of our approach to black hole entropy
can be obtained from the analysis of the Kerr black hole.
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