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INTRODUCTION AND MOTIVATION

Background of personal motivation
Conjectures and papers of Ashoka Sen and others
a) tachyon matter
b) nonarchimedean/p-adic mathematical background of 
strings, branes and tachyons
• p-Adic numbers and nonarchimedean geometry in 

physics (Volovich, Dragovic …)
• p-Adic and adelic strings (Volovich, Freund, Witten, 

Shatashvili, Zwiebach …)
• p-Adic inflation (Barnaby, Cline, Koshelev …)



INTRODUCTION AND MOTIVATION

• The inflationary universe scenario in which the 
early universe undergoes a rapid expansion has 
been generally accepted as a solution to the 
horizon problem and some other related problems 
of the standard big-bang cosmology

• Quantum cosmology: probably the best way to 
describe the evolution of the early universe, 
however …

• Recent years - a lot of evidence from WMAP and 
Planck observations of the CMB



OBSERVATIONAL PARAMETERS

• Hubble hierarchy (slow-roll) parameters

• Length of inflation

• The end of inflation
• Three independent observational parameters: amplitude 

of scalar perturbation , tensor-to-scalar ratio and
scalar spectral index
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OBSERVATIONAL PARAMETERS

• Satelite Planck
(May 2009 – October 2013) 

• Latest results are published
in year 2018.

Planck 2015 results: XIII. Cosmological parameters, Astronomy & Astrophysics. 594 (2016) A13
Planck 2015 results. XX. Constraints on inflation, Astronomy & Astrophysics. 594 (2016) A20



LAGRANGIAN OF A SCALAR FIELD -

• In general case – any function of a scalar field and
kinetic energy

• Canonical field, potential

,

• Non-canonical models

• Dirac-Born-Infeld (DBI) Lagrangian

• Special case – tachyonic



TACHYONS

• Traditionally, the word tachyon was used to describe a 
hypothetical particle which propagates faster than 
light (Sommerfeld 1904 ?).

• In modern physics this meaning has been changed
• The effective tachyonic field theory  was proposed by A. Sen

• String theory: states of quantum fields with imaginary mass 
(i.e. negative mass squared)

• It was believed: such fields permitted propagation faster 
than light

• However it was realized that the imaginary mass creates an 
instability and tachyons spontaneously decay through the 
process known as tachyon condensation



TACHYION FIELDS

• No classical interpretation of the
”imaginary mass”
• The instability: The potential of the

tachyonic field is initially at a local
maximum rather than a local
minimum (like a ball at the top of
a hill)

• A small perturbation - forces the
field to roll down towards the
local minimum.

• Quanta are not tachyon any more, but rather an 
”ordinary” particle with a positive mass.
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TACHYON INFLATION

• Consider the tachyonic field T minimally coupled to Einstein's 
gravity with action
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• Where R is Ricci scalar, and Lagrangian and Hamiltionian for 
tachyon potential are
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• Homogenous and isotropic space, FRW metrics
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TACHYON INFLATION

• As well as for a standard scalar field i ,
however:

మ
.

• Friedmann equation:
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• Energy momentum conservation equation, 
takes a form
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TACHYON INFLATION

• Non-dimensional equations
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• Dimensionless constant ଶ ఙ బ்
మ

ெು೗
మ , a choice of a constant

(brane tension) was motivated by string theory
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CONDITION FOR TACHYON INFLATION

• General condition for inflation

• Slow-roll conditions

• Equations for slow-roll inflation
మ



INITIAL CONDITION FOR TACHYON INFLATION

• Basic ideas, problems …. (Steer, Vernizzi 2004)

• Slow-roll parameters

• Number of e-folds
೐

೔ ௘ ௘
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BRANEWORLD UNIVERSE

• Braneworld universe is based on the scenario in which 
matter is confined on a brane moving in the higher 
dimensional bulk with only gravity allowed to 
propagate in the bulk. 

• N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. 
Lett. B 429 (1998) 

• L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 
3370 (RS I) 

• L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999) 
4690 (RS II) 

• 1998 ADD / 2000 DGP



D-BRANES, COSMOLOGY WITH
EXTRA DIMENISONS

• 1999 – RSI and RSII 
• We will consider the Randall-Sundrum scenario with a 

braneworld embedded in a 5-dim asymptotically Anti de 
Sitter space (AdS5) 

• One of the simplest models
• Two branes with opposite tensions are placed at some 

distance in 5 dimensional space
• RSI model – observer reside on the brane with negative 

tension, distance to the 2nd brane corresponds to the 
Newtonian gravitational constant

• RSII – observer is placed on the positive tension brane, 2nd

brane is pushed to infinity



RSI MODEL

x

5x y

0y  y l y

0  0 

• Observers reside on the negative 
tension brane at .

• The coordinate position of the 
negative tension brane

• serves as a compactification radius so 
that the effective

• compactification scale is ௖ .



RSII MODEL

0y  y

0  0 

x

5x y

• Observers reside on the positive tension brane at
• and the negative tension brane is pushed 

off to infinity in the fifth dimension.



RSII MODEL

• The space is described by Anti de Siter metric

ହ
ଶ ିଶ௞௬ ఓఔ ఓ ఔ ଶ

• Extended RSII model includes radion backreaction

• Total action
௕௨௟௞ ௕௥ ௠௔௧

• After integrating out 5th dimension…
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RSII MODEL

• Action for a 3-brane moving in bulk

• Action for the brane

• Without radion 

• Total Lagrangian
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RSII MODEL

• In flat space, FRW metrics
ଶ

ఓఔ
ఓ ఔ ଶ ଶ ଶ ଶ ଶ

• Hamiltonian equations

ః
ఓ

,ఓ
௵
ఓ

,ఓ

• The Hamiltonian

ః
ଶ

ଶ

ସ ௵
ଶ ଼ ଶ



RSII MODEL

• The Hamiltonian equations

• The modified Friedman equation

• Combining with a continuity equation it 
leads to the second Friedman equation









3

3

H

H





 

 

 

 

    

    











2

8 21 .
3 3

a G GH
a k

       
 


2

44 ( ) 1
3
GH G
k


       
  



NONDIMENSIONAL EQUATIONS

• Substitutions:
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INITIAL CONDITIONS FOR RSII MODEL

• Initial conditions – from a model without radion
field

• “Pure” tachyon potential ర

• Hamiltonian ర

• Nondimensional equation
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ESTIMATION OF INITIAL CONDITIONS

• The end of inflation ଵ , tj. ଶ ସ  RSII modification 
can be neglected

• Number of e-folds

• Number of e-folds (standard tachyon inflation)

• Huge difference in number of e-folds RSII extends the 
period of inflation!!!
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OBSERVATIONAL PARAMETERS

• Scalar spectral index and tensor-to-scalar ratio 
(the first order of parameters )

ଵ ௜

௦ ଵ ௜ ଶ ௜

• The second order of parameters  different

• Always constant , however constant 
for tachyon inflation in standard cosmology, and

for Randall-Sundrum cosmology
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NUMERICAL RESULTS



OBSERVATIONAL PARAMETERS ( , ), 

• Diagram with observational 
constraints from Planck 2015.

• The dots represent the 
calculation in the tachyon model 
for various , 

• 35% of calculated results for pairs 
of free parameters is represented 
in the plot. 

• Red solid line represents the 
slow-roll approximation of the 
standard tachyon model with 
inverse quartic potential.
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OBSERVATIONAL PARAMETERS ( , ),
RSII MODEL

• Free parameters from 
the interval:

• Approximate relation:
• RS model

• Tachyon model (FRW)
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( , ) AS A FUNCTION OF , , 

• 65% is plotted,
12% in range
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THE BEST FITTING RESULTS ( , )
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TACHYON WITH AN INVERSE POWER-LAW 
POTENTIAL IN A BRANEWORLD COSMOLOGY

Here, we study a quite similar tachyon cosmological 
model based on the dynamics of a 3-brane in the 
bulk of the second Randall-Sundrum model 
extended to more general warp functions, i.e. with a 
selfinteracting scalar

• As a consequence, on the observer brane G is 
modified to be the scale dependent four-
dimensional gravitational constant. A power law 
warp factor generates an inverse power-law 
potential V ~1/ φ* φ *φ*φ



TACHYON WITH AN INVERSE POWER-LAW 
POTENTIAL IN A BRANEWORLD COSMOLOGY

• Introducing a combined dimensionless coupling

• and dimensionless functions, in the same way as it was done for the
previous models, we obtain the following set of equations

• Where

• We analyze in detail the tachyon with potential

2 5 N
2

8 8G G

k k

    

4

8 2

,

5 8 2

1

4
3

1
h

 




 



  


 


 

  

 


  






2 2

, ,, and
3 12

h  
     


  

     

/4( ) n  



TACHYON WITH AN INVERSE POWER-LAW 
POTENTIAL IN A BRANEWORLD COSMOLOGY

• Following the similar procedure as in the previous RSII 
model, for a given and inital condition for the tachyon
field can be obtained from the slow-roll condition

• Where

• Here, we find the critical value 
``dust vs quasi de Sitter``.
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EXTENDED RSII, 

45 ≤ N < 75, 1 ≤ κ < 10
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Blue solid line approximation:
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(latest results show that the approximation is 
valid only for ି𝜽, for other potential depends on ) 



EXTENDED RSII,

45 ≤ N < 75, 1 ≤ κ < 10
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Blue solid line approximation:
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(latest results show that the approximation is 
valid only for ି𝜽, for other potential depends on ) 



ONGOING RESEARCH - RSII AND 
HOLOGRAPHIC COSMOLOGY

• Here we present some newest results and ongoing 
work



AdS/CFT  correspondence is a holographic duality between 
gravity in d+1-dim space-time and quantum CFT on the d-dim 
boundary. Original formulation stems from string theory:

Conformal 
Boundary 
at z=0

AdS bulk
time

Equivalence of 3+1-dim
N =4 Supersymmetric YM Theory 
and string theory in AdS5S5

Examples of CFT:
quantum electrodynamics,
N =4  Super YM gauge theory, 
massless scalar field theory,
massless spin ½ field theory

J. Maldacena, Adv. Theor. Math. Phys. 2 (1998)

Connection  with AdS/CFT
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We start from AdS-Schwarzschild static coordinates and make 
the coordinate transformation                                 .     The line 
element will take a general form

Imposing the boundary conditions at z=0:
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Holographic cosmology 
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we obtain the induced metric at the boundary in the FRW form



Solving Einstein’s equations in the bulk one finds
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CFT CFT (0)1
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Hence, apart from the conformal anomaly, the CFT dual to the 
time dependent asymptotically AdS5 bulk metric  is a conformal 
fluid with the equation of state                        where                 , CFT CFT 3p 
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from  Einstein’s equations on the boundary we obtain the 
holographic Friedmann equation
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The second Friedmann equation can be derived from energy-
momentum conservation
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Holographic map 
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The time dependent bulk spacetime with metric

may be regarded as a z-foliation of the bulk with FRW cosmology 
on each z-slice. In particular:
at z=zbr: RSII  cosmology,   at z=0: holographic cosmology. 
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A map between z-cosmology and z=0-cosmology can be 
constructed using
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CONCLUSION

• We have investigated a model of inflation based on the dynamics of a 
D3-brane in the AdS5 bulk of the RSII model. The bulk metric is 
extended to include the backreaction of the radion excitations.

• The agreement with observations is not ideal, the present model is 
disfavored but not excluded. However, the model is based on the 
brane dynamics which results in a definite potential with one free 
parameter only.

• The simplest tachyon model that stems from the dynamics of a D3-
brane in an AdS5 bulk yielding basically an inverse quartic potential.

• The same mechanism lead to a more general tachyon potential if the 
AdS5 background metric is deformed by the presence of matter in the 
bulk, e.g. in the form of a minimally coupled scalar field with an 
arbitrary self-interaction potential. Critical values for the inverse 
power potential are found.
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