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Introduction

Renormalizability and unitarity are requiremets that can hardly be
reconciled within a consistent theory of quantum gravity.

Einstein-Hilbert gravity is non-renormalizable, but, if we include infinitely
many counterterms, it is pertubatively unitary.

Renormalizable higher-derivative theories of gravity (e.g. Stelle’s
quadratic theory) can be attained, but are generically expected to be
non-unitary.

Recently, [Camanho, Edelstein, Maldacena, Zhiboedov,’16] it has been
argued that higher-derivative corrections to the 3-graviton coupling in a
weakly coupled theory of gravity are constrained by causality.
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Weakly nonlocal gravity

We consider the model

Sg =
2

κ2
D

∫
dDx
√
−g [R+Gµνγ(�)Rµν + V (R)] , (1)

where (σ ≡ `2Λ )

γ(�) =
eH(σ�) − 1

�
. (2)

expH(z) is asymptotically polynomial

expH(z)→ |z|γ+N+1 for |z| → +∞, γ >
D

2
, (3)

with 2N + 4 = Deven or 2N + 4 = Dodd + 1, to guarantee the locality of
counterterms.

V (R) ∼ O(R3), but quadratic in the Ricci tensor, is a local potential
containing at most 2γ + 2N + 4 derivatives.
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Super-renormalizability and finiteness

By standard power-counting

δD(K) Λ2γ(L−1)

∫
(dDp)L

(
1

p2γ+D

)I (
p2γ+D

)V
we get the degree of divergence ω(G) ≡ Deven − 2γ(L− 1) and
ω(G) ≡ Dodd − (2γ + 1)(L− 1).

if γ > (Dodd − 1)/2, no divergences!

if γ > Deven/2, only 1-loop divergences !

Some terms in V (R) can be used as “killers” of the 1-loop divergences.
For example, in D = 4, the two terms

s1R
2�γ−2(R2), s2RµνR

µν�γ−2(RρσR
ρσ), (4)

modify the beta-functions for R and R2
µν by a contribution linear in s1

and s2, making it possible to have them vanishing. The killer terms
should be in general at least quadratic in the Ricci tensor.
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Perturbative unitarity

In the harmonic gauge (∂µh
µν = 0)

O−1 ≈ P (2)

k2eH(k2/Λ2)
− P (0)

(D − 2) k2eH(k2/Λ2)
. (5)

No ghosts appear if H(z) are entire functions with no poles.

The usual analytic continuation from Euclidean to Minkowski cannot be
performed due to thebehavior at infinity of expH, but
[Modesto,Briscese,2018], [Pius,Sen,2016] still the ordinary Cutkosky rules
can be derived and it is possible to prove at all perturbative levels the
unitarity relation

Tab − T ∗ba = i
∑
c

T ∗cbTca (6)
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Quadratic gravity

The most general gravity action quadratic in the curvatures is

Sg = −2κ−2
D

∫
dDx
√
−g
(
R+ γ′0R

2 + γ′2R
2
µν + γ4GB

)
, (7)

Major advantages

GB gives no contribution to the propagator for any D (neither to the
vertices in D = 4, being topological )

expanding around a flat background (R(0) = R
(0)
µν = R

(0)
µνρσ = 0), vertices

are greatly simplified by the relationships
√
−g (1)

= R(1) = R
(1)
µν = 0 valid

for on-shell legs.

Three level amplitudes with all external legs on graviton shell are
calculable by standard techniques
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Scattering amplitudes for Stelle’s theory

Born approximation four graviton scattering amplitudes in the center-of-mass
reference frame, s = 4E2 , t = −2E2 (1− cos θ) and u = −2E2 (1 + cos θ)

A (++,++) = As (++,++) +At (++,++) +Au (++,++) +Acontact (++,++)

= −2i

(
− 2

κ2
4

)
E2 1

sin2 θ
,

The amplitude doesn’t have the expected UV behavior ∼ E4 and is the
same as the one determined in Einstein gravity by dimensional analysis
and symmetry arguments. This is the result of non-trivial cancellation
between the massive poles in the propagator and the three-graviton
vertices and between the contact and exchange diagrams.

Our result is consistent with the fact that in the absence of the Einstein
term we are left with scale invariant terms whose contribution to
amplitudes for dimensionless particles is vanishing.
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For D > 4 the Gauss-Bonnet term contributes the vertices

AD=5 (++,++)

= −i 2

κ2
5

{
16E6γ2

4

[
1 + 8E2 (3(γ0 − γ4) + (γ2 + 4γ4))

]
(1− 4E2(γ2 + 4γ4)) [3 + 4E2 (16(γ0 − γ4) + 5(γ2 + 4γ4))]

− 2E2 1

sin2 θ

}
,

AD=6 (++,++)

= −i 2

κ2
6

{
8E6γ2

4

[
1 + 8E2 (3(γ0 − γ4) + (γ2 + 4γ4))

]
(1− 4E2(γ2 + 4γ4)) [1 + 2E2 (10(γ0 − γ4) + 3(γ2 + 4γ4))]

− 2E2 1

sin2 θ

}
.

In D > 4 the expected linear term in γ4 is absent due to a non trivial
cancellation between contact and exchange diagrams.

In D > 4 the dependence on γ′0 and γ′2 is due to the fact that in exchange
diagrams the massive poles cannot cancel with the three-graviton vertices
of GB. This is associated to the dependence on arbitrary power of E in
the IR.

Stefano Giaccari Causality in nonlocal gravity 8 / 18



Scattering amplitudes for weakly nonlocal gravity

If γ′0 = γ′0(�), γ′2 = γ′2(�) and γ4 = 0,

As(++,++) = −2κ
−2
4

(
−

9

8

t(s + t)

s
+

9

32
γ2(s)

(
s
2

+ (s + 2t)
2
)

+
9

8
s
2
γ0(s)

)
, (8)

At(++,++) = −2κ
−2
4

− 1

8

(
s3 − 5s2t − st2 + t3

)
(s + t)2

s3t

+
1

16
γ2(t)

(
2s4 − 10s3t − s2t2 + 4st3 + t4

)
(s + t)2

s4
+

1

8
γ0(t)

t2(s + t)4

s4

 , (9)

Au(++,++) = −2κ
−2
4

− 1

8

(
s3 − 5s2u − su2 + u3

)
(s + u)2

s3u

+
1

16
γ2(u)

(
2s4 − 10s3u − s2u2 + 4su3 + u4

)
(s + u)2

s4
+

1

8
γ0(u)

u2(s + u)4

s4

 , (10)

Acontact(++,++) = −2κ
−2
4

− 1

4

s4 + s3t − 2st3 − t4

s3
−

9

32
γ2(s)

(
s
2

+ (s + 2t)
2
)
−

9

8
s
2
γ0(s)

−
1

16
γ2(t)

(
2s4 − 10s3t − s2t2 + 4st3 + t4

)
(s + t)2

s4
−

1

8
γ0(t)

t2(s + t)4

s4

−
1

16
γ2(u)

(
2s4 − 10s3u − s2u2 + 4su3 + u4

)
(s + u)2

s4
−

1

8
γ0(u)

u2(s + u)4

s4

 . (11)

The cancellation of poles occurs separately in each channel

A(++,++) = A(++,++)EH . (12)
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A field redefinition theorem

Given two actions S′(g) and S(g) such that

S′(g) = S(g) + Ei(g)Fij(g)Ej(g) , (13)

where Fij can contain derivatives and Ei = δS/δgi, there exist a field
redefinition

g′i = gi + ∆ijEj ∆ij = ∆j i, (14)

such that, perturbatively in F and to all orders in powers of F , we have the
equivalence

S′(g) = S(g′) . (15)

The theorem states the equivalence of the two theories only
perturbatively in F . In particular the two theories are clearly different if
S′(g) has additional poles wrt S(g′).

The theorem in particular applies to tree-level amplitudes whenever the
external legs are on the mass-shell shared by the two theories.
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Implications for higher derivative theories

Any higher derivative gravity theory which can be recast in the form

S′(g) = SEH(g) +Rµν(g)Fµν,ρσ(g)Rρσ(g) . (16)

with Fµν,ρσ = gµνgρσγ0(�) + gµρgνσγ2(�) + Ṽ(R,Ric,Riem,∇)
µνρσ

,
shares the same n-graviton on-shell tree-level amplitude as SEH(g).

If we neglect finite contributions to the quantum effective action, this
result can be applied to all finite weakly nonlocal theories with γ4(�) = 0
and killers of the kind R2�γ−2(R2) and RµνR

µν�γ−2(RρσR
ρσ). It also

applies to 1-loop super-renormalizable theories in D = 4, while in general
terms giving non vanishing contribution will be generated in
renormalizable and super-renormalizable theories for D ≥ 6.

More in general the theorem applies whenever the finite contributions to
the quantum effective action can be cast in such a way as to be at least
quadratic in the scalar curvature and Ricci tensors.
=⇒ Higher derivatives terms contain crucial physical information about
the UV behavior, but, at least in some cases, look quite elusive
observationally.
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Causality: Shapiro’s time delay

One possible definition of causality [Gao,Wald,’00] is that we cannot send
signals faster than what is allowed by the asymptotic causal structure of
the spacetime.

We want to probe the scale ΛPL � b� `Λ.

In the limit t/s << 1 (but large s) we consider the Eikonal approximation

iAeik = 2s

∫
dD−2~b e−i~q·

~b
[
eiδ(b,s) − 1

]
, (17)

where the phase is given by

δ(b, s) =
1

2s

∫
dD−2~q

(2π)D−2
ei~q·

~bAtree(s,−~q 2) . (18)

The result is independent on the particular theory (higher derivative or
weakly non-local)
Shapiro’s time delay is:

∆t = 2∂Eδ(E, b) . (19)

where E is the energy of the probe-particle.
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Causality Violation in Gauss-Bonnet gravity

For the theory

L =
2

κ2
D

[
R+ λGB(RµνρσR

µνρσ − 4RµνR
µν +R2)

]
. (20)

we have At = AtEH +AtGB, where

AtEH ≈ −8πGs2

t
(ε1 · ε3)(ε2 · ε4)

AtGB ≈ κ2
DλGBs

2

t
(kµ2 k

ν
4 ε
ρ
2νε4ρµε1 · ε3 + kµ1 k

ν
3 ε
ρ
1νε3ρµε2 · ε4) .

One can find (~n ≡ ~b/b)

∆tg−GB =
Γ
(
D−4

2

)
π
D−4

2

16EG

bD−4
(ε1 · ε1)(ε2 · ε2)[

1 +
4λGB(D − 2)(D − 4)

b2

(
(n · ε1)2

ε1 · ε1
+

(n · ε2)2

ε2 · ε2
− 2

D − 2

)]
,(21)

which can be negative for b2 < λGB.
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Causality in pure nonlocal gravity

The leading four-graviton amplitude in the Regge limit is:

ANL(++,++) = At(++,++) = −8πGs2

t
. (22)

The phase and Shapiro’s time delay are respectively:

δg(b, s) =
Γ
(
D−4

2

)
π
D−4

2

Gs

bD−4
(ε1 · ε3)(ε2 · ε4) , (23)

∆tg =
Γ
(
D−4

2

)
π
D−4

2

16EG

bD−4
(ε1 · ε3)(ε2 · ε4) . (24)

no time advance =⇒ no causality violation
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Scalar field in nonlocal gravity

In the limit t� s the leading contribution comes from the amplitude in
the t-channel, namely

At(s, t) ≈ −8πG
s2

t
e−H(t) . (25)

In D = 5

δ(b, s) =
1

2s

∫
d3~q

(2π)3
ei~q·

~bAt(s,−~q 2) =
2Gs

π

∫
dq

sin(bq)

bq
e−H(−q2) , (26)

For the form factor e−σ�

δ(b, s)SFT = Gs
Erf(b/2`Λ)

b
,

It reduces to the one in Einstein’s
theory for b� `Λ, namely

δ(b, s)SFT → δEH(b, s) =
Gs

b
.
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General causal nonlocal theories

Any nonlocal theory that is tree-level equivalent to a causal local one is
causal too. Given a causal (possibly local) theory, the field redefinition
theorem provides an algorithm for constructing a full class of higher
derivative (even non-local) causal theories.

A remarkable example

L =
2

κ2
D

[
R+

(
Gµν −

κ2
D

2
(TAµν + Tφρσ)

)
Fµν,ρσg

(
Gρσ −

κ2
D

2
(TAρσ + Tφρσ)

)]
−1

4
FµνF

µν +∇µFµν FA∇ρF ρν +
1

2
φ(�−m2)φ+ φ(�−m2)Fφ (�−m2)φ ,

where

Fµν,ρσg ≡
(
gµρgνσ − 1

2
gµνgρσ

)(
eHg(�) − 1

�

)
,

FA ≡ 1

2

(
eHA(�) − 1

�

)
TAµν ≡ FµσFσν −

1

4
FµνF

µν , ,

Fφ ≡ 1

2

(
eHφ(�−m2) − 1

�−m2

)
, Tφµν ≡ ∂µφ∂νφ−

1

2
gµν(∂λφ∂

λφ+m2φ2) .
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Conclusions

In recent years, nonlocal theories have proved to be much more treatable
than expected. In particular, such issues like quantum renormalizability
and perturbative unitarity seems to be not unreconcilable.

In particular, we can choose which kind of higher derivative terms can
show up using for example causality as a guide principle.

Similar method can be applied to N = 1 nonlocal supergravity.

Future directions of research can be N > 1 nonlocal supergravites, role of
conformal symmetry in achieving finiteness, singularity-free solutions, etc.
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