Spin connections,
local Lorentz transformations

and cosmological perturbations
in modified teleparallel theories of gravity

Alexey Golovnev
British University in Egypt

10th Mathematical Physics Meeting:
School and Conference on Modern Mathematical Physics
Belgrade, September 2019

Alexey Golovnev British University in Egypt



There are different approaches to teleparallel gravity. | prefer to
avoid the gauge theory viewpoint.

We work in the tetrad formulation, the metric at each point is
associated with the set of tangent vectors via g, = e;j‘eVBnAB
which defines the tetrad fields e/f up to local Lorentz rotations.

Now we can consider every tensor with Latin indices instead of
spacetime ones with the relation between the two

A1,...,An — A1 .. ApQ1,...,0n 51 . Bm
T BryBw = Ca1 " Can T Ty 5By CB
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One can naturally have torsionful connections without non-metricity
with the requirement

8“e,f‘+w uBe — Fij =0
of vanishing of the "full covariant derivative" of the tetrad.

Even if naive local Lorentz invariance is broken, the construction is
to be assumed locally Lorentz invariant under

el — /\Ceu , whp— /\éwCHD(/\*l)g — (ANH2a,NE .
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Nota bene! One can also use formalism of Lagrange multipliers to
set curvature (and non-metricity) to zero. This is an important
alternative formalism, also to be used for symmetric teleparallelism
(non-metricity with neither curvature not trosion)
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The condition of vanishing of the "full covariant derivative" of the
tetrad is solved straightforwardly to obtain

B

« a A A _ A
M =€a (8ue,/ 4+ w MB%) =ey D€,

with ©,, being the Lorentz-covariant (with respect to the Latin
index only) derivative
or another way around

«

A _ A v v A
- € r,uVeB - eBaﬂeu

. : . . (0
In particular, one can find the spin connection W which corresponds

(0)
to the Levi-Civita connection [ (g) of a given metric g.
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Basically, both Ffjﬁ and wA#B represent one and the same
connection in different disguises. This conclusion is further
substantiated by comparing the curvatures for both connections,

A _ A A A C A C
R Bul/(w) _aﬂw vB _a'/w uB+w ,qu vB — W W uB

and
RO‘B#V(F) - a'urgﬁ a raﬂ + I_ I_ o ruﬁ,

which after a simple calculation gives
A B
Raﬁuu( )_ eAR Buu(w)eﬁ :

In other words, the two Riemann tensors are related by mere
change of the types of indices. Therefore, those are one and the
same tensor under our conventions which are common for all the
tensors we use.
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Assuming that /48, = 0, one can follow the standard textbook
derivation of the Levi-Civita connection and prove that

«a (0)a a
r,uzz =T ,uz/(g) + K pv

where r (&) is the Levi-Civita connection of the metric g, while
the tensor K

[

1
Koz,uzz = 5 (Ta,uy + Tuau + T,u,oa/) = 5 (T,ucw + Tua,u - Tal/,u) )

is known under the name of contortion.
It is obviously antisymmetric with respect to two indices:

Ka;w = - Ku,ua .
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Substituting our connection into the the definition of curvature, we
get

« 6 (0) (0) « (O) « «@ «
R b’uv(r) =R BW( r+v HK vV K uB+K upruﬁ_K VpruB

(0)
for the Riemann tensor with <7 , being the covariant derivative
_ (0)
associated to T, (g).
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Making the necessary contractions we obtain the scalar curvature

(0) (0)
RM)=R(r)+2v ,T"+T

where the torsion vector is

Tu=T% =—T%u
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and the torsion scalar can be written in several equivalent ways:

1

T = EKaﬁuTﬁw—TﬂTﬂ
1
- 9 aﬁusaﬁu
b N CCTIEES A LR o T
4 afu +§ afu — Ip

with the superpotential
Sonv — Kpov +gau TV — gow TH
which satisfies the antisymmetry condition

Souv _ _ gavp
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In the classical formulation of teleparallel gravity, one uses the
Weitzenbock connection given by

W
W AMB =0
or
[ = € 0ue
. : . U
which is obviously curvature-free, R%; (') = 0.
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Nota bene!

I. This choice is obviously locally Lorentz breaking. Invariant
formulation would be to demand that w is flat, see below.

[I. Another viewpoint on teleparallel gravity is through gauging
translations. Then richer structures and bolder claims are possible,
such as separation of inertia from gravitation, preferred connection
for a given tetrad etc. (see e.g. the book by Aldrovandi and
Pereira).

We will stick to our simple definition (roughly, GR in terms of
torsion). However, the choice of (flat) spin connection can be
important for finiteness of action (variational principle, quantum
gravity, etc.).
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We can denote the determinant of e;‘ by || e

|, and see from

(0) (0)
RN =R(r)+2v ,7+T

that the action
Sy = —/d4x|e| - T

is equivalent to the action of GR,

[axve: R(T).

modulo the surface term, if the Weitzenbdck, or any other inertial,
connection is assumed.
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We are also interested in equations of motion.
We have the following first order variations for the inverse tetrad,
measure, metric and torsion:

dely
Sllell
08uv
ogh”
0e T,

—eBeAcSe

el - eAéeu,

NAB <eﬁ5ef + el’,qéeB) ,
(g“ael’ +g"% “) sel,

—eq Tﬁwée’é‘ + ez (CDMée,, — Qyée;\) .
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In particular, for the teleparallel equivalent of GR we have §.S
= / d4xHeH‘<—25a’“’ TagyeA?&eﬁ\ + Teyden — QSBWeg@aéeﬁ>

with the Lorentz-covariant derivative © being equal to the ordinary
one, since w®_, = 0 in the Weitzenbéck case.

Alexey Golovnev British University in Egypt



We need to perform integration by parts in the last term which
gives

20e;} - (0 (llell - S"€l) = llell - 50 aSs"ef)

© 5o
=2lle]l - | 7 055" — K¥upS, 1 | - €foe]

where we have used the antisymmetry of S and corrected for the

(0)
difference between I and [ by the second term on the right hand
side. Indeed, due to the antisymmetry of S we have

Vs =
S

and correct for the different connection by noting that

0)
B ®g _ B
wZ,4— W7, =K,

v

" s
9 (IlellS3") =

uv
l/ASB
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Finally, using the non-degeneracy of tetrads, we get the equations
of motion in the form

(0) 1
\V4 aSﬁ“O‘ — S (Tag,, + Ka,jg) + ET(SZ =0
which can be shown to be equivalent to general relativity by direct

substitution of

le% (0) (0) o (0) « fe% P [e% P
Rﬁw(r):_ VK% = V., K u6+KupKuﬁ_KVpKu6

into the Einstein equation,

Alexey Golovnev British University in Egypt



What if we covariantise the model by substituting an explicit spin
connection?

Variations with respect to the spin connection coefficients can be
derived exactly since

0w TE, , =o0w®,  — ow™

Qv % v
. . a — ,aBg, A
is an exact relation for dw?,, = eje 0w” .
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Suppose, we want to covariantise the teleparallel action by allowing
for an arbitrary spin connection in the torsion scalar,

5= / d*xlle] - T(e,w),

and varying independently with respect to both variables e and w.
We have

0,S = —/d4x|e\ (TH,, +2T,08) 6w .
The equation of motion is
TE,, + T,oH — Tadth =0
which (in dimension d # 2) entails T,, = 0 upon tracing, and totally
T, =0.

It does not give the desired result!
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A better idea would be to vary the spin connection in the inertial
class only. The latter can be imposed by demanding

w5 = —(N1)E0uNE

where A is an arbitrary Lorentz matrix and varying

Sy = — / d*x|lel| - T(e,w(A))

with respect to e and A.

Literally it means that there exists a frame in which w =0
(Weitzenbdck), however one is allowed to make a local Lorentz
rotation by an arbitrary matrix field A3(x) whose values belong to
Lorentz group.
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Explicit calculations are given in

Alexey Golovnev, Tomi Koivisto, Marit Sandstad.
On the covariance of teleparallel gravity theories.
Classical and Quantum Gravity 34 (2017) 145013
https://arxiv.org/abs/1701.06271

However, the essence is very simple. Varying the spin connection
with fixed tetrads does not change the Levi-Civita connection, while
we know that in any case

(0)
5/\T = (5/\R((d) -2 \V4 H((S/\ T”)

where 0p(...) = du(...) - Iaw.

Since R(w(A)) =0, the variation d,,Sqy is a surface term and does
not produce any new equation of motion. The model, though
locally Lorentz covariant, is then equivalent to teleparallel gravity.
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It would be interesting to try making modifications of GR in the
teleparallel framework. One very popular example is f(T) gravity.

Note that there is not even a universal agreement in the community
about the number of degrees of freedom in this model.

The covariantisation procedure works differently in generalised
teleparallel gravities. Since the dependence on the spin connection
in generalised models cannot be reduced to a surface term, the
variation §,, produces non-trivial equations of motion.
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However, admissible variations of w in the inertial class amount to
local Lorentz transformations. Note also that a covariantised action
is, by definition, identically invariant under simultaneous local
Lorentz transformation of the spin connection and the tetrad (and
other non-trivially transforming fields if there are some). Therefore,
the stationarity of the action under local Lorentz transformations of
the spin connection is equivalent to that under local Lorentz
rotations of tetrads. The latter is already ensured given that the
equations of motion for the tetrad are satisfied since the local
Lorentz rotation is nothing but a special class of variations of the
tetrad.

eA — /\Ceu , wAMB — /\éwCMD(/\—l)EB’ — (AH20,15.
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Explicit calculations are given in

Alexey Golovnev, Tomi Koivisto, Marit Sandstad.
On the covariance of teleparallel gravity theories.
Classical and Quantum Gravity 34 (2017) 145013
https://arxiv.org/abs/1701.06271
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Let us consider an f( T) model with inertial spin connection,

Sery = — / d'xlle]] - £ (T(e,w(A)).

We want to derive equations of motion.
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Making the variation with respect to the tetrad gives

(0) 1
fr GMV +fTTSNVa8aT + 5 (f — fTT) guw = 0.

Unlike in the TEGR case, this equation has a non-trivial
antisymmetric part

T 9o fr(T) + T fr(T) — THO” fr(T) =0

which reflects the non-invariance under local Lorentz rotations of
tetrads. Variation with respect to the purely inertial spin
connection gives the same result.

Nota bene! The equation of motion in our paper was incorrect.
Correct equation dates back to an old paper by Li, Sotiriou and
Barrow.
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Let us also make a general comment on the structure of equations.
The broken local Lorentz invariance implies that the Bianchi
identities do not hold automatically. Indeed, if we define T#" via

0S
— v, B
£ = el el s,
o
. . . a A A v v A
then invariance of the action under e, — e, —€,0,¢" —(YOye,

leads to
1

[lell ™

which can easily be transformed (using Ku,3 — Taps = —Kuga)
into

O, (llellTh) — Taezdves =0

(0)
VT + KT 5 = 0.
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When the local Lorentz invariance is satisfied, invariance under

elf‘ — /\ée}f implies that " is symmetric, and by virtue of
antisymmetry of contortion tensor, the usual Bianchi identities are
restored. In f(T) this is not the case. However, the antisymmetric
part of equations requires that the antisymmetric part of TH”
vanishes, and after that the Bianchi identities are in operation
again. We will see below that this condition allows one to
determine (. However, cases with fermions and/or spin-density

should be considered with care.
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f(T) is quite popular for cosmology.
What do we know about cosmological perturbations?
There used to be a lot of confusion.

We develop an f(T)-type FRW cosmology
ds? = a*(7) (—d7? + dx'dx’)

in terms of the following tetrad ansatz:

Nota bene! A tetrad choice for the given metric has been done
which is not innocuous in the context of f(T), but in this case
seems reasonable.

Let's have 1 = 0,/ and A = (), a for time and space components.
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Let us consider the following standard parametrisation of the metric
fluctuations:

go = —a (1) (1+2¢)
gi = a(r)-(0i¢+v)
gi = @) ((1—20)55 + 2050 + 96 + djc; + hy)

with four scalars ¢, 9, {, o, two divergenceless vectors v;, ¢;, and
divergenceless traceless tensor hj;.
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One can choose the following parametrisation for the tetrad:
f = a(r) (1+9)
el 0
e = a(r)-(9aC + va)

1
e = a(r)- ((1 — 1)o7 + ﬁgja + 0jca + 2haj) )

However, in f(T) we must also consider local Lorentz rotations of
this choice (or variations of the spin connection).
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Finally, we can use an ansatz

e = a(r)-(1+9)

e? = a(r)-(9if + u;)

eg = a(r)(0a( + va)

eja = a(r)- ((1 — ¢)(5a + 8 o+ €ajkOks + 0jca + €ajwi + = haj)

with the metric components given by

goo = —a(1)-(1+29)
goi = a(7)-(0i(¢—B)+vi— uj)
gi = a(7)- ((1—2¢)5; + 2050 + +0ic; + Ojc;i + hy) .

and new components given by scalar 3, pseudoscalar s, vector u;,
and pseudovector w;.

Alexey Golovnev British University in Egypt



Under infinitesimal diffeomorphisms x* — x* + £#(x)
with €% and ¢ = 9;¢ + &;, one can simply derive the following
transformation laws:

¢ — ¢—& —H
v — P+ HE

c — o-—¢

B — B=¢°

¢ — C-f:

G — =&

Vi — V,'—N;.

Guage invariant combinations are obvious.

Our gauge choice: ¢ =0 and § = ¢ (conformal Newtonian
gauge), and ¢; = 0.
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Now we are in a position to vary the equation (with matter
contribution)

(0) 1
fT Guu +fTT5uyo¢aaT + § (f — fTT) Buvy = 8 G - @W
since all the quantities are known, either from the standard

cosmological perturbation theory or from the torsion components
above.
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The antisymmetric part of equations is relatively simple. Suppose
that fr7 # 0 and that the energy-momentum tensor of matter is
symmetric. In this case we have

(Suva — Supa) 0°T = 0.
One can easily see that it boils down to
(Tapw + 8apTv — 8w Ty) 0°T =0,

our antisymmetric part of equation from previous work.
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For symmetric part of equations, let us denote

Q,uzz = (S,uua + Su,ua) 0T
where we easily see that
Suua + Suua = T,u,ua + Tuua + Qg/u/ Ta - (gau Tl/ + 8av Tu) .

At the background level the only non-trivial components are spatial

24 H?
e

Q = (H' — H?)5.

One can write the symmetric part of equation as

(0) 1
fT G# JrfTTQlfL =+ 5 (f — fTT) (55 = 871'695.
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We see that at the background level only Tjo; = — Tjjo components
are non-vanishing. The only non-zero components of the
superpotential at the background level are

S,'OJ' = *5,",'0 = f232H5U,
and one can easily check that

6 2
T =5 Top = 5 H,

N | =

and all background equations from the previous works can be
reproduced.
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The tensor sector is simple.
It is easy to see that, under transverse and traceless condition, the
only non-zero torsion components are

Tijk = — (Ojhik — Okhyj)

a
2
T,'OJ' = a <H6U + = (h/ + 2Hh )>

and both 0T =0and 67, = 0.
The antisymmetric part of equation To;; = 0 is satisfied identically.
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In the symmetric part we have

, , , 12H(H' — H?) 1
i i i 0

which via azéGf = % (hZ + 2Hh§j — Ah;j) leads to

6frr(H — H?)

fTh:-J/-—i-QH <f‘r+ 5
a

)%—HAM:O

for an ideal fluid.
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Our ansatz is

) (1+9¢)

)+ (0iB + uj)
T) ’ (83C+ Va)

).

1
T <(1 — w)(sf + 851-0' + Eajkaks + 0jca + €ajk Wk + 2haj> .

eg = a(r
er = a(r
ef = a
el = a

Let’s look at vectors in ¢ = 0 gauge.
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In the vector sector, we easily compute the following torsion

components:
TOij = a (8 u; — 6,-uj)
Too,' = 328 (—LI' + H(V,' — U,'))
Tk = a° (emdjw — ejiOkw))
Tioj = a (H(5U + GUka 8jv,-)

and the torsion vector
To = 3H,

Ti = €jjk0jwy.
and see that at the linear order

0T = 0.

(The latter was to be expected since we cannot construct a scalar
out of vectors.)
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The antisymmetric part of equations
(Tapw + 8au Ty — 8aw Ty) 0T = 0 then boils down to

Topw + gou Tv — gov Ty = 0.
With spatial indices we get
Oju; — Ojuj =0
which, after taking divergence, implies
Au; =0
and, in perturbation theory, should be solved as

u=20.
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The mixed indices case gives
ui + 2H(vi — u;) + €jjxOjwx = 0
which constrains w as
€ijkOjwi = —2Hv;.

Here we have two independent equations for two independent
components of w.
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Now let us look at the symmetric part:
1 1 N
Ql/,u, = E (T,u,ua + Ty,ua) + 8uv Ty — 5 (ga,u T, + gav T,LL) O°T.
For mixed indices we easily find that
6H(H' — H?)

Qoi = == (uf + 2H(vi — u)) + egudjw)

which vanishes under the antisymmetric part of equations.
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Therefore, this part of Einstein equations is not modified:
fT A Vi = 1677Ga(p + p)u,-

where u is the vortical part of ideal fluid velocity, and we have used
u = 0 to write simply v instead of the metric perturbation v — u.
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Analogously we find

6H(H' — H?
0Qy = _SHH 1) g ) (Givj + 9jvi)

which with 32(5Gji = —% (8,‘/1 + 8_,'V,')/ — H(a,'\/_,' + 8jV,') gives

I g2
fT' VI{—I—Q (fTH—l- 6fTTH(H H )> % =0

22

in case of perfect fluid matter.
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Let us consider the pseudoscalar variaton given by
e? = a(7) (67 + €,j0;s) . The only non-zero components of the
torsion tensor and the torsion vector are

T,'oj = —T,'jo = 32 (H(S,'j + GUkakS/) ,

To = 3H.
One can easily see that this variation of the tetrad does not
contribute to the linearised equations of motion at all.

True "remnant symmetry"?
Unlike other Lorentzian modes (vector, pseudovector and scalar, see
below) which are not dynamical but constrained.
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Our ansatz is

& = a(r) (1+0)

el@ = a(7)-(9ip + ui)

e = a(r) (0 + va)

ej‘? — 3(7-) (( )53 + 62 0 + eajkaks + 8 iCy + €ajk Wk + = haJ>

Let's look at scalars in 0 =0, 8 = ( gauge.
In terms of metric, this is conformal Newtonian gauge.
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We compute the first order perturbations of the torsion tensor
_ _B
Tauy = €, NAB <8uelf\ — a,/e;?)
to the get the following components:

Toj = 0
Tooi = a0 (¢—¢)

T = a° - (6;0k0 — 6i0j0)

a® [Ho; — 93¢ — 65 (2HY + ')

=
RS
I

up to the linear order. Note that Tjg; is symmetric under i < j.
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Let us also find the torsion vector
Ti = & (Ol = Ouel') = 8" Ty = 01 (90— ¢’ — 20)
and analogously
To = g" Tuow = 3H — AC =3¢/,

and the torsion scalar

oT = —g (AC+3Ho +3¢) .
a
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Let us start from the antisymmetric part of equations.

One can easily check that (Sjjo — Sjia) 0°T vanishes identically in
the linear order.

And the mixed components give

9; (H A+ 3H?¢ + 3HY' — 3H'y + 3H?y) = 0.

which can be solved as

H' — H?
AC = -3 <¢’+H¢H w>.
We see that the antisymmetric part of perturbation equations
makes perfect sense making the (essentially Lorentz) variable ¢
constrained. Now, we have the usual number of equations for the
usual number of variables for the symmetric part.
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It is easy to see that at the linear level §QY = 0 and the equation
(0) © 4
fré G +frr | G§ —5T | 0T = —87Gop

yields the result

frr H3

2
12H fTT) (’Qb/ + H¢)—12 22 AC = 47TGa25p

22

fTAi/}—3H <fT +
where we have used

(0)
a® Gy = —3H> —2 A% +6H (¢ +Hg) and 503 = —6p.
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For the mixed components we have

4H? H' — H?
5QP = 0 <A< +3H¢ + 3¢ 43 o w)

(0)
which, with 26 G? = —20; (¢/ + H¢) and 609 = —1(p + p)o,
(0)
brings the equation f+d G,-0 +fTTch,9 = 87rG5@? into the form

2 g2
fr (¢/+H¢)+%fﬁ <AC+3H¢+3¢/+3H HH ¢)

= 4rGa(p + p)ou

where u is the velocity potential, and using our solution for ( it can
be brought to a nicer form of

12H (H' — H?) frr

g Y = 4rGa(p + p)ou.

fr (v + Ho) +

As usual, it constrains the velocity potential.
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The spatial components are complicated. Assuming no anisotropic
stress, their 85- part gives

fr(¢ — o)+ 12frrH(H — H*)¢ = 0.
It is interesting to note that we have gravitational slip

_12frrH(H - H?)

¢_’¢: fT

¢

even without anisotropic stress.
Moreover, given our solution for ¢

/42
ac=-3(v+to- T2,

it might be very big a slip for superhorizon modes, unless very close
to de Sitter.
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For the remaining piece of information, one can take trace of the
spatial equation to get

e (07 4+ 20+ 0) + (24 2000+ 5 5. (0~ v)

af
+ 5 (H A+ HEH — H?) A()

12frr
a2

(H2¢"+ H(3Hl— H2)¢,+ H3¢/—|— H2(5Hl —2H2)¢)

48frrrH3(H' — H?)
+ o

(AC+3Hg +3¢) = 4nGa’op
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Precisely as we have done above for the mixed components, one
can substitute the solution for A from the antisymmetric part into
the temporal and diagonal spatial components (or even into the
intermediate steps of derivations for then the way to them will
become much shorter) and get

36fr7H?(H — H?)
2

fr (A —3H(Y' + Hg)) — b = 4w Ga2p

a

and

fr (07 20+ 0) + (24 2100+ 5 5. (0 v) )

12f
+ =TT
a

<H(H/ . H2)w/
+ (HH” +2H? — 5HPH' + H4) b+ HA(H — H2)¢>

144frrr H?(H' — H?)?
+ g
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If, for a given mode with a wavenumber k, we solve for the
gravitational slip as (see antisymmetric and spatial non-diagonal
components)

2 fr (6 =) = 36Fr7(H — H?) (HY + H26 — (H = H?) ).

substitute ¢ as a function of ¥ and combine two equations for an
adiabatic mode by dp = c28p, we will get a second order equation
for 1), much the same way as in GR, though not that nice.

Note that in the limit of Kk — oo the gravitational slip vanishes, and
the problem might be tractable.
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After careful calculations, there are no new dynamical modes in
linear perturbations!

(5+1=6; there are 5 constrained variables and 1 dropping off any
equations ("remnant symmetry"7))

Details are given in
A. Golovnev, T. Koivisto https://arxiv.org/abs/1808.05565
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A set of personal opinions

@ Dynamics of f(T) and other modified teleparallel models are
poorly understood yet. The new modes require further
investigation.

@ Even though introduction of flat spin connection does not
change the model bringing a bunch of new variables, it might
be interesting and hopefully productive to look from this point
of view.

@ Linear perturbations around spatially flat FRW are not very
difficult. New dynamical modes do not show up. Validity of
linear approximation and viability of the model are very
questionable.

@ Topics around remnant symmetry are not well understood. In
general, analysis in terms of Lorentz matrices as new fields is
also a very interesting approach.

@ In my opinion, f(T) gravity is pathological. However, it would
be very interesting to understand the details of pathology.
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Thank you for your attention!
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