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Regge calculus
Regge discretization of GR
M—-TM), ¢guw—{L>0lecT(M)},
such that g, is eucledean and flat in each 4-symplex o € T'(M).
What is g,,(0)? Use Cayley-Menger metric
Gu(0) = Lo, + Lo, — Ly,

where o = (01234) and u,v = 1,2,3,4. Then

GW(U)
(o) = ——————.
9509 = Gt o)) T

Restrictions

det G(o) >0, detG(r)>0, detG(A)> 0(triangular inequalities),

so that one can define the volumes of symplexes

det G(o,) = 2"(n))?*V?(a,), n€{2,3,4}.

Note that for an arbitrary assignment of L. the volumes can be positive,
Zero or imaginary.

Einstein-Hilbert action
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where
on =21 — > 6%
and 1ALV
. 8(0) _ = AVo .
sin 6 37‘/7‘/7/



Regge path integral

7 — /HdL (L) e 5r L)/

where D C (Ry)M and
Ny

pw(L) =T (Lo)", a= const.

e=1

Problem with Z : Sg(L) is not bounded nor has a fixed sign. Use

ZC_/HdLu (SR

but there is a problem of how to do Wick’s rotation.

Minkowski PL metric

L? can be negative, so that L. € R, or L. € i R = we have to indicate
in T'(M) which edges are space-like (S) and which edges are time-like
(T). We do not use the light-like edges (L? = 0).

Restrictions
detG(o) <0
det G(1) > 0 forT € SSSor det G(1) <0 forT € SST
det G(A) >0 for A e SSor det G(A) <0 for A € ST

Volumes det &
(V)2 = '26(,)2' >0, n=234,

n(n!
so that V,, > 0.
Dihedral angles: let

det G
2 _ n _
(Un) - 2”(77,')2 ) — 27 3a 47

so that v, =V, or v, =1V, while v, = L, or v. = iL. where L. > 0.
Then
3 VeV

sina, ) = , sing” ==
Ve Vet 2 VA VA

4 VA Uy

, sin H(AU) =

3 Uy Uy



e Angles in ST planes: use

— =

- v _
cosa = ———, sina=+v1—-cos?a, aeC.

[l 1]9]] °
Hence for a € R
i) @ = (1,0), v = (cosha,sinha),

cosa =cosha, sina=1sinha = a=1ia.
ii) @ = (1,0), ¥ = (sinh a, cosha),

. . m .
cosa =sinha, sina=cosha = o= E—f—za.

iii) @ = (0,1), ¥ = (sinh a, cosh a),
cosa =cosha, sina=1isinha = a=ia.
e Dihedral angle 6

i) o =(4,1) = sinf =sina for A € ST, sinf = cosha for A € SS
ii) 0 = (3,2) = sinf = isinha for A € SS, sinf =sina for A € ST

e The deficit angle
oo =21 -3 0% eR forAe ST,

ba =21 =308 € SZ+iR for A€ SS.
e Regge action
1
Sp = ZAAf(SAﬂL ZAA(SAER? (1)
Aess b AEST

R. Loll et al verified (1) for special triangulations, but one can simply

take
1
Re( > AA.5A> = > Anaa,
A€SS L A€SS

which is consistent with the definition of the Lorentzian angles intro-
duced by J.W. Barrett et al.



3 Path-integral quantization

e Take M =¥ x [0,n]| and a time-ordered (causal) triangulation
T(M) = Ui Te(X) UT(B),

such that v, = L, for € € Ti(3) and v, = iL, for € € T(B). The path
integral is given by

Ny
7 = [ T[dLp(L) 50, @)
D e=1

where D C (R, )™ and the measure ; can be any function which makes
Z convergent.

e However, if we want that the corresponding effective action I'(L) be-
comes Sg(L) in the classical limit (L. > [p), one can show that

Inp(AL) =~ O\, a>2,
for A — 400, see [1].

e A simple choice for p, consistent with the diffeomorphism invarince of
the semiclassical action is

u(L) = exp (~Va(L)/LY) .

where Vj is the volume of T'(M) and Ly is a new parameter in the
theory, which can be fixed by requiring that the effective cosmological
constant coincides with the observed value, see [2].

e The path integral (2) is a function of the initial edge lengths I, on
To(X) and the final edge lengths I on T,(X). This is known as the
propagator, G(I,1'), since it represents the propagator for the third-
quantized theory, W(l) — ®[W(1)].

4 The wavefunction of the Universe

e In canonical QG there is a wavefunction ¥ (h), which satisfies the WdW
equation

A ~

W (pn, h)¥(h) =0,

5



where h is a metric on X and
ds® = —(N? — n'n;)dt* 4 2n; dtds" + hi; dz'dax?
gives the spacetime metric.
What is U(h) in the PI quantization? Hartle and Hawking:
() = Zp(h). (3)

where M has the topology of a cup (OM = X)) and the metrics on M
are euclidian.

W(h) can be calculated for the minisuperspace models, where the metric
has a finite number of DOF, for example, the FLRW metric

ds? = —N*(t) dt* 4+ a*(t) (da® + dy? + dz?). (4)

Consequently
U(a)= [ DN [Daexp (—/IdtLE(a,a, N)/l%) | (5)

In general case the path integral (5) can be calculated only approxi-
mately by using the stationary phase aproximation. In the case of the
FRLW metric, one can obtain a solution of the WdW equation if a
special choice of the contour of integration for N is made.

The HH wavefunction can be calculated in the PLQG formulation, and
the advantage is that there are no ambigous or complex domains of
integration.

Example: M = 8% ¥ =53 T(M) = T(S?) U T(cone),
Li=1>0,e€T(S%), L. =s>0,e € T(cone), so that

U(l) = /OOO ds u(l, s) exp (iSR(l,s)/Z%) .

For T'(S?) a pentagon (5 tetrahedrons)

2
Sal) = 22 20,5+ 205 = Dot ).
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where
51:27'(—3@—")/, 52:27T—3ﬁ,

\/@ 2\/5\/52—%\/52—§ ﬁ

sina = , sinf = , sinvy =
\/32—§ 0 3(52_%) !
and
3 312
[ = - 2 _
ull, s) exp( s 8)
Note that

= CLZO s S = Nto
Is there a WdW operator W such that W¥(a) = 07

. 1Y d
@W\If:onrﬁ(

a da? da

1dv a? /v
— —|—’y(>+a3\lf:0,
da® \ a

a da
for some «a, 3,7 € R.

This is not necessarilly true in PLQG, becase WdW equation corre-
sponds to a smooth manifold M, while we have a PL manifold T'(M).
However, when N; — oo (smooth limit)

Bosonic matter can be coupled via the PL metric g,,(c). In the case
of a scalar field ¢

Sm:ZVU'Caa

where
1

Lo =—59"(0) Dud Dy — Uln).
g (o) is the inverse metric and

¢u_¢0

D & —
M¢ LO,LL

where ¢, = ¢(m,) and ¢y = ¢(mp).



The HH wavefuction for T(M) = T(S?) U T (cone)

V)= [Tas [T doutts)exp (zp [Sall,) + Sull. 5. f)]) ,

where ¢(m) = f for 7 € T(S?) and ¢(7) = ¢ for m € T"(cone).
Fermionic matter can be coupled via the PL tetrads ej (o)
Na €4,(0) €,(0) = g ()
and PL spin connections wi’(o).
An alternative way to construct the WFU: the propagator
G(h,h')=Z(h, 1)
is the kernel of the WdW equation

W (pn, h) G(h, k') = §(h — I').

Hence
W(h) = / DI G(h, W) Uy (H) |

where Wo(h) is the initial WFU.
Note that Wy(h) has to satisfy W¥, = 0.
In the PLQG case G(h, 1) — G(1,I") = Z(1,1').
PLQG example:
M=2S8*x[0,1, T(M)=Ty,(S*)UT(B)UT(S?

where Ty = T, all the edges in Tj and T are spacelike, while the edges
in T'(B) can be all timelike or all spacelike.

Toy model: Ty =Ty =05, Aj € Ty and B; € T, j =1,2,...,5 and
- . . p
[A; A = 1", |IB;Byl| =1, IIAij||2=5(l—l')2—t2, t>0.

Hence .
G, 1) :/ dt (1, 1) exp (iSp(L, U, 6)/13) .
0
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5 Conclusions
e Replacing D(T(M), L) with R} ?
e Smooth-limit approximations of MS models?

e HH vs CQG wavefunction.
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