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Objectives: (a) Formulation of a plausible inflationary model entirely

in terms of a pure modified gravity without any a priori matter

couplings within the formalism of non-Riemannian volume

elements;

(b) The non-Riemannian volume elements dynamically create in

the physical Einstein frame a canonical scalar matter field and

produce a non-trivial inflationary potential with a large flat region

and a low-lying stable minimum corresponding to the late universe

stage;

(c) The model predicts scalar power spectral index and tensor to

scalar ratio in accordance with the available data.
Non-Riemannian Volume Elements Dynamically Generate Inflation – p. 2/24



Introduction - Overview of Talk
Cosmological Inflation : Explaining the “puzzles” of Big-Bang

cosmology (horizon problem, flatness problem, magnetic monople

problem, etc.); important framework for treatment of primordial

density perturbations, CMB.

Early successful cosmological model: original Starobinsky model

based on extended f(R) = R+R2-gravity.

Modified (Extended) Gravity Theories :

Main motivation – to overcome the limitations of standard Einstein’s

general relativity: cosmology (problems of dark energy and dark

matter), quantum field theory in curved spacetime (renormalization

in higher loops), string theory (low-energy effective field theories).

Inflationary Models from Modified Gravity :

Various classes based on:f(R)-gravity; scalar-tensor gravity;

Gauss-Bonnet gravity, non-local gravity, . . . . Specific Class – based

on the formalism of non-Riemannian volume elements , in

particular, whithout involving a priori any matter fields .
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Brief Reminder on Non-Riemannian Volume-Forms (Volume Elements)

Essence of the formalism:

In integrals over differentiable manifolds (not necessarily

Riemannian one, so no metric is needed) volume-forms are given

by nonsingular maximal rank differential forms ω:
∫

M
ω
(

. . .
)

=

∫

M
dxD Ω

(

. . .
)

, ω =
1

D!
ωµ1...µD

dxµ1∧. . .∧dxµD , (1)

where ωµ1...µD
= −εµ1...µD

Ω ; Ω – volume element density.

In Riemannian D-dimensional spacetime manifolds a standard

generally-covariant volume-form is defined through the “D-bein”

(frame-bundle) canonical one-forms eA = eAµ dx
µ (A = 0, . . . ,D − 1):

ω = e0 ∧ . . . ∧ eD−1 = det ‖eAµ ‖ dxµ1 ∧ . . . ∧ dxµD , (2)

where the standard Riemannian volume element density

Ω = det ‖eAµ ‖ =
√

− det ‖gµν‖.
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Brief Reminder on Non-Riemannian Volume-Forms (Volume Elements)

To construct modified gravitational theories as alternatives to

ordinary standard theories in Einstein’s general relativity, instead of√−g we can employ one or more alternative non-Riemannian
volume element(s) as in (1) given by non-singular exact D-forms

ω = dA, where: A = 1
(D−1)!Aµ1...µD−1

dxµ1 ∧ . . . ∧ dxµ−1 and the

corresponding volume element density reads:

Ω ≡ Φ(A) =
1

(D − 1)!
εµ1...µD ∂µ1

Aµ2...µD
. (3)

Thus, non-Riemannian volume element densities Φ(A) are defined

in terms of the (scalar density of the) dual field-strength of auxiliary

rank D − 1 tensor gauge fields Aµ1...µD−1
.

Remark : In the first-order (Palatini) formalism (gµν and Γλ
µν a

priori independent), the auxiliary tensor gauge fields Aµ1...µD−1
turn

out to be (almost) pure-gauge – no propagating field degrees of

freedom except few integration constants.
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Brief Reminder on Non-Riemannian Volume-Forms (Volume Elements)

However, in the second-order (metric) formalism (where Γλ
µν is

the usual Levi-Civita connection of the metric gµν) the first

non-Riemannian volume form Φ(A) is not any more pure-gauge.

The reason is that in the action S =
∫

d4xΦ(A)R + . . ., the

scalar curvature R (in the metric formalism) containes

second-order (time) derivatives (they amount to a total derivative

in the ordinary case S =
∫

d4x
√−gR+ . . .).

So defining χ1 ≡ Φ(A)/
√−g – it becomes physical degree of

freedom as seen from the eqs. of motion:

Rµν +
1

χ1

(

gµν�χ1 −∇µ∇νχ1

)

+ . . . = 0 (4)
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Pure Gravity with Non-Riemannian Volume Elements

Simple modified gravity model without any matter fields (using

“Planck units” 16πGN = 1):

S =

∫

d4x
{

Φ1(A)
[

R− 2Λ0
Φ1(A)√−g

]

+ Φ2(B)
Φ0(C)√−g

}

, (5)

R is the scalar curvature in the metric formalism and:

Φ1(A) ≡
1

3!
εµνκλ∂µAνκλ , Φ2(B) ≡ 1

3!
εµνκλ∂µBνκλ ,

Φ0(C) ≡ 1

3!
εµνκλ∂µCνκλ . (6)

Λ0 is dimensionful parameter (will play the role of inflationary scale).

The form of the action (5) is uniquely specified by the

requirement about global Weyl-scale invariance under:

gµν → λgµν , Aµνκ → λAµνκ , Bµνκ → λ2Bµνκ , Cµνκ → Cµνκ . (7)

where λ = const.
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Pure Gravity with Non-Riemannian Volume Elements
The eqs. motion from (5) w.r.t. the auxiliary gauge fields

Aµνλ, Bµνλ , Cµνλ yield, respectively:

R− 4Λ0
Φ1(A)√−g

= −M1 ≡ const , (8)

Φ0(C)√−g
= −M2 ≡ const ,

Φ2(B)√−g
= χ2 ≡ const . (9)

Here M1,M2 and χ2 are free integration constants; M1,M2 indicate

spontaneous breaking of global Weyl symmetry (7).

The eqs. motion w.r.t. gµν from (5) read:

Rµν − Λ0χ1 gµν +
1

χ1

(

gµν�χ1 −∇µ∇νχ1

)

− χ2M2

χ1
gµν = 0 , (10)

with χ1 ≡ Φ(A)/
√−g. Taking the trace of (10):

3
�χ1

χ1
− 4χ2M2

χ1
−M1 = 0 . (11)
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Einstein Frame and Effective Scalar Potential
We now transform Eqs.(10) and (11) via conformal transformation

ḡµν = χ1gµν – transformed equations acquire the standard form of

Einstein equations w.r.t. the new “Einstein-frame” metric ḡµν :

Rµν(ḡ)−
1

2
ḡµνR(ḡ) =

1

2

[

∂µu∂νu− ḡµν
(1

2
ḡκλ∂κu∂λu+ Ueff(u)

)

]

, (12)

�̄u+
∂Ueff

∂u
= 0 , (13)

where we have redefined Φ1(A)/
√−g ≡ χ1 = exp

(

u/
√
3
)

in order

to obtain a canonically normalized kinetic term for the scalar field u,

and where we have a dynamically generated effective scalar
potential :

Ueff(u) = 2Λ0 −M1 exp
(

− u√
3

)

+ χ2M2 exp
(

−2
u√
3

)

. (14)

Ueff (14) is a generalization of the classic Starobinsky potential –

it is a special case of (14) for Λ0 =
1
4M1 =

1
2χ2M2.
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Einstein Frame and Effective Potential

Accordingly, the corresponding Einstein-frame action reads:

SEF =

∫

d4x
√−ḡ

[

R(ḡ)− 1

2
ḡµν∂µu∂νu− Ueff(u)

]

. (15)

Ueff(u) = 2Λ0 −M1 exp
(

− u√
3

)

+ χ2M2 exp
(

−2
u√
3

)

.

The Einstein-frame action is entirely dynamically generated:

(a) The canonical scalar field u is dynamically created from the

ratio of volume-element densities Φ(A)/
√−g;

(b) The effective potential Ueff(u) is dynamically generated due

to the appearance of the free integration constants M1,2, χ2 as a

result of the constrained dynamics of the auxiliary gauge fields

Aµνλ, Bµνλ, Cµνλ – constituents of the non-Riemannian volume

element densities Φ(A),Φ(B),Φ(C).
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Einstein Frame and Effective Potential

Inflation - Slow roll

Dark Energy
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Qualitative shape of the dynamically generated effective scalar

potential Ueff (14) as function of u. The unit for u is MPlanck/
√
2.
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Einstein Frame and Effective Potential

Ueff(u) has two main features relevant for cosmological applications.

First, Ueff(u) (14) possesses a flat region for large positive u

and, second, it has a stable minimum for a small finite value u = u∗:

(i) Ueff(u) ≃ 2Λ0 for large u;

(ii) ∂Ueff

∂u = 0 for u ≡ u∗ where:

exp
(

− u∗√
3

)

=
M1

2χ2M2
,

∂2Ueff

∂u2

∣

∣

∣

∣

u=u∗

=
M2

1

6χ2M2
> 0 . (16)

The flat region of Ueff(u) for large positive u correspond to

“early” universe’ inflationary evolution with energy scale 2Λ0. On

the other hand, the region around the stable minimum at u = u∗

(16) correspond to “late” universe’ evolution where:

Ueff(u∗) = 2Λ0 −
M2

1

4χ2M2
≡ 2ΛDE (17)
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Evolution of the Homogeneous Solution

Consider reduction of the Einstein-frame action (15) to the

Friedmann-Lemaitre-Robertson-Walker (FLRW) setting with metric

ds2 = −N2dt2 + a(t)2d~x2, and with u = u(t).

Will study the evolution of u = u(t) and a = a(t) using the

method of autonomous dynamical systems.

FLRW-reduced action:

SFLRW =

∫

d4x
[

−6
a

.
a
2

N
+Na3

(1

2

.
u
2
+M1e

−u/
√
3−M2χ2e

−2u/
√
3−2Λ0

)]

(18)

The pertinent Friedmann and u-field equations:

H2 =
1

6
ρ , ρ =

1

2

.
u
2
+Ueff(u) , (19)

.
H= −1

4
(ρ+ p) , p =

1

2

.
u
2 −Ueff(u) , (20)

..
u +3H

.
u +

∂Ueff

∂u
= 0 . (21)
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Rewrite Eqs.(19)-(21) in terms of dimensionless variables:

x :=
u̇√
12H

, y :=

√

Ueff(u)− 2ΛDE√
6H

, z :=

√
ΛDE√
3H

, (22)

with LDE = Λ0 − M2
1

8χ2M2
as in (17).

The first Friedman Eq.(19) yields an algebraic constraint

x2 + y2 + z2 = 1, so that the autonomous dynamical system w.r.t.

(x, z) reads:

x′ =

√
3

2ΛDE
z2

[

−M1ξ(x, z) + 2M2χ2ξ
2(x, z)

]

− 3x(1− x2) ,

z′ = 3zx2 , (23)

where the primes denote derivative w.r.t. the parameter N = log a,

and the function ξ(x, z) is defined as:

ξ(x, z) =
M1

2χ2M2

[

1−
√

8Λ0M2χ2

M2
1

1− x2 − z2

z2

]

. (24)
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Phase space portrait of the autonomous system (23) – 2 crit. points:
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(a) Stable point A (x = 0, z = 1) corresponding to “late” universe

de Sitter behavior with CC ΛDE (17).

(b) Unstable point B
(

x = 0, z =
√

ΛDE/Λ0

)

corresponding to

beginning of evolution in the “early” universe at large u. If the

evolution starts at any point close to B, then the dynamics drives

the system away from B towards the stable point A at late times.
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Numerical example of the solution for the Hubble parameter H(t)

vs. time. Initially for short times the inflationary Hubble parameter is

large and afterwards approaches its cosmological late time value.
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Numerical example of the solution for the scalar field u(t) vs. time.

The unit for u is MPlanck/
√
2. The blown-up rectangle depicts the

oscillations of u(t) around the minimum of Ueff (14).
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Perturbations and Observables

In order to check the viability of the model we investigate the

perturbations of the above background evolution, in particular

focusing on the inflationary observables such as the scalar spectral

index ns and the tensor-to-scalar ratio r. As usual, we introduce the

Hubble slow-roll parameters, which in our case using the potential

Ueff(u) (14) read:

ǫ =
(U ′

eff(u)

Ueff(u)

)2
=

4ζ2

3

(

1/2− ζ
)2

[(

1/2− ζ
)2

+ δ/4
]2 , (25)

|η| = 2|U
′′
eff(u)

Ueff(u)
| = 2ζ

3

(

1− 4ζ
)

[(

1/2− ζ
)2

+ δ/4
]

, (26)

where:

ζ ≡ M2χ2

M1
e−u/

√
3 , δ ≡ 8M2χ2

M2
1

ΛDE , (27)

with ΛDE – the dark energy density (17), and therefore δ very small.
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Perturbations and Observables

Inflation ends when ǫ(uf ) = 1 for some u = uf where

(ζf ≡ M2χ2

M1
e−uf/

√
3):

ζf =
1

2
(

1 + 2/
√
3
)

[

1 +
1√
3
−
√

1/3−
(

1 + 2/
√
3
)

δ
]

≃ 1

2
(

1 + 2/
√
3
) . (28)

For the number of e-foldings N = 1
2

∫ uf

ui
du Ueff/U

′
eff we obtain:

N =
3

8
(1 + δ)

(

1/ζi − 1/ζf

)

−3

4
(1− δ) log

ζf
ζi

+
3

4
δ log

( 1− 2ζi
1− 2ζf

)

, (29)

where ζi ≡ M2χ2

M1
e−ui/

√
3 and u = ui is very large corresponding to

the start of the inflation.
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Perturbations and Observables

Ignoring δ we have for N approximately:

N ≃ 3M1

8M2χ2
eui/

√
3−

√
3

4
ui−

3

4

(

1+2/
√
3
)

+
3

4
log

(

2
(

1+2/
√
3
)

)

. (30)

Using the slow-roll parameters, one can calculate the values of the

scalar spectral index ns and the tensor-to-scalar ratio r,

respectively, as functions of N :

r ≈ 16 ǫ
(

ui(N )
)

, ns ≈ 1− 6 ǫ
(

ui(N )
)

+ 2η
(

ui(N )
)

, (31)

where ui(N ) is the solution of the transcedental Eq.(30) for ui as a

function of N . From (31), (30), (25), (26) we find:

r ≃ 12
[

N +
√
3
4 ui(N ) + c0

]2 , c0 ≡
√
3

2
− 3

4
log

(

2
(

1+2/
√
3
)

)

, (32)

and ns ≃ 1− r
4 −

√

r
3 .
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Perturbations and Observables
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The predicted values of the r and ns for different e-foldings. The

different values of the r and ns are compatible with the PLANCK

observational data (0.95 < ns < 0.97 , r < 0.064).

Viable example – for N = 60 we obtain: ns ≈ 0.969 , r ≈ 0.002.
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Conclusions

We proposed a very simple gravity model without any initial

matter fields in terms of several alternative non-Riemannian

spacetime volume elements within the second order (metric)

formalism.

We show how the non-Riemannian volume-elements, when

passing to the physical Einstein frame, create a canonical scalar

field and produce dynamically a non-trivial inflationary-type

potential for the latter with a large flat region and a stable

low-lying minimum.

We study the evolution of the cosmological solutions from the

point of view of the theory of dynamical systems. Our model

predicts scalar spectral index ns ≈ 0.969 and tensor-to-scalar

ratio r ≈ 0.002 for 60 e-folds, which is in accordance with the

observational data.
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Conclusions

A natural next step is to consider two-field inflation by adding a

new scalar field ϕ with non-trivial potentials in the starting

modified gravity action (5) built in terms of several

non-Riemannian volume elements and subject to preserving the

requirement of global Weyl-scale invariance (7).

In this case the non-Riemannian volume elements will again

generate a second scalar field u and create dynamically a

non-trivial two-field scalar potential with a very specific

geometry of the field space of ϕ, u.

It will be interesting to see how the latter dynamically generated

two-field inflationary model would conform to the observational

data.
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