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Introduction

Motivation from Quantum Gravity

Continuum differential geometry cannot be the geometry when
both quantum and gravitational effects are present

One of the possibilities is to consider

NONCOMMUTATIVE GEOMETRY (NCG)

where the idea is to ”algebralize” geometric notions and then
generalize them to noncommutative algebras
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Noncommutative Geometry ↔ Quantum geometry:

On a curved space one must use the methods of Riemannian
geometry but in their quantum version.

The formalism of noncommutative differential geometry does
not require functions and differentials to commute, so is more
general even when the algebra is classical.
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Plan of the talk:

1 Quantum Riemannian Geometry ingredients

2 Digital - what & why

3 Digital quantum geometries in n ≤ 3

4 Conclusions
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Differential Geometry vs NC Differential Geometry

M - manifold and
C∞(M) - functions on a manifold

→ ’coordinate algebra’ A

and

Ω1 space of 1-forms, e.g.
differentials:

df =
∑
i

∂f

∂xµ
dxµ

f dg = (dg)f

→ noncommutative differential
structure:
differential bimodule (Ω1, d) of
1-forms with d - obeying the
Leibniz rule and
→ f dg 6= (dg)f

Bimodule - to associatively multiply such 1-forms by elements of A
from the left and the right.
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Quantum Riemannian Geometry

Ingredients of noncommutative Riemannian geometry as quantum
geometry:

quantum differentials

quantum metrics

quantum-Levi Civita connections

quantum curvature

quantum Ricci and Einstein tensors
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Quantum differentials

Differential calculus on an algebra A

A is a ‘coordinate’ algebra (noncommutative or commutative)
over any field k .

Definition
A first order differential calculus (Ω1, d) over A means:

1 Ω1 is an A-bimodule

2 A linear map d : A→ Ω1 such that

d(ab) = (da)b + adb , ∀a, b ∈ A

3 Ω1 = span{adb}
4 (optional) ker d = k .1 - connectedness condition
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Differential graded algebra -DGA

Definition
DGA on an algebra A is:

1 A graded algebra Ω = ⊕n≥0Ωn, Ω0 = A

2 d : Ωn → Ωn+1, s.t. d2 = 0 and

d(ωρ) = (dω) ∧ ρ+ (−1)nω ∧ dρ

∀ω, ρ ∈ Ω, ω ∈ Ωn.

3 A,dA generate Ω
(optional surjectivity condition - if it holds we say it is an
exterior algebra on A)
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Quantum metrics
When working with algebraic differential forms by metric we mean
an element

g ∈ Ω1 ⊗A Ω1

which is:

’quantum symmetric’: ∧(g) = 0,
invertible
in the sense that there exists ( , ) : Ω1 ⊗A Ω1 � A

((ω, )⊗ id)g = ω = (id ⊗ ( , ω))g ∀ω ∈ Ω1

central in the ’coordinate algebra’ A 3 xµ:

[g , xµ] = 0

For a quantum metric with inverse one has a natural
‘quantum dimension’

dim = ( , )(g) ∈ k .

The general form of the quantum metric:

g = gµνdx
µ ⊗A dxν

[Madore,....,Beggs,Majid]
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Quantum connections

[Quillen, Karoubi, Michor, Mourad, Dubois-Violette, . . . ]

Bimodule connection: ∇ : Ω1 → Ω1 ⊗A Ω1,
σ : Ω1 ⊗A Ω1 → Ω1 ⊗A Ω1,
for a ∈ A, ω ∈ Ω1

∇(aω) = a∇ω + da⊗ ω

∇(ωa) = (∇ω)a + σ(ω ⊗ da)

Such connections extend to tensor products:

∇(ω⊗η) = (∇ω)⊗η+(σ⊗id)(ω⊗∇η), ω⊗η ∈ Ω1⊗AΩ1
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Metric compatibility, torsion and curvature

Metric compatible connection:

∇(g) = 0

Torsion of a connection on Ω1 is

T∇ω = ∧∇ω − dω : T∇ : Ω1 → Ω2

We define a quantum Levi-Civita connection (QLC
connection) as metric compatible and torsion free connection.

Curvature:

R∇ω = (d⊗ id − ∧(id ⊗∇))∇ω R∇ : Ω1 → Ω2 ⊗A Ω1
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Ricci & Einstein tensors

Ricci tensor:

Ricci = (( , )⊗ id)(id⊗ i ⊗ id)R∇

with respect to a ’lifting’ bimodule map i : Ω2 → Ω1 ⊗A Ω1

such that ∧ ◦ i = id.

Then Ricci scalar is S = ( , )Ricci.

For Einstein tensor one can consider the usual definition

Eins = Ricci− 1

2
Sg

but field independent option would be:

Eins = Ricci− αSg , α ∈ k

one could take Eins = Ricci− 1
dimSg

[Beggs,Majid,Class.Quantum.Grav.31(2014)]
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’Digital’

Recall that the framework works for A over any field k .
Take k as the finite field F2 = {0, 1}.

The choice of the finite field leads to a new kind of
’discretisation scheme’, which adds ’digital’ to quantum
geometry.

A standard technique in physics/engineering is to replace
geometric backgrounds by discrete approximations such as a
lattice or graph, thereby rendering systems more calculable.

Allows to get a repertoire of digital quantum geometries
⇒ to test ideas and conjectures in the general theory if we
expect them to hold for any field, even if we are mainly
interested in the theory over C.
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Aim

to study bimodule quantum Riemannian geometries over the
field F2 = {0, 1} of two elements (’digital’ quantum
geometries)

to classify all such geometries for coordinate algebras up to
dimension n ≤ 3

Preview of results:
A rich moduli of examples for n = 3, including 9 that are Ricci
flat but not flat
(with commutative coordinate algebras xµxν = xνxµ,
but with noncommuting differentials xµdxρ 6= dxρxµ,
xµ, xν ∈ A, dxρ ∈ Ω1 ).
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Digital Quantum Geometry set up

’Coordinate algebra’ A (unital associative algebra) over
F2 - the field of two elements 0, 1.

{xµ} - basis of A where x0 = 1 the unit and µ = 0, · · · , n− 1.

Structure constants V µν
ρ ∈ F2

xµxν = V µν
ρx
ρ.

We have classified all possible such algebras over F2 up to n ≤ 4.
[S.Majid,A.P.,J.Math.Phys.59 (2018)]
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’Coordinate algebras’ over F2 in low dim
{xµ} is a basis of A where x0 = 1 the unit and µ = 0, · · · , n − 1

For n = 1
There is only one unital algebra of dimension 1 (x0x0 = x0)

For n = 2
There are 3∗ inequivalent (commutative) algebras A, B, C:
A: x1x1 = 0
B: x1x1 = x1

C: x1x1 = x0 + x1 = 1 + x1.

For n = 3
There are 6∗ inequivalent (commutative) algebras: A, B, C, D, E,
F and one noncommutative G.

For n = 4 There are 16∗ inequivalent (commutative) algebras:
A - P and 9 noncommutative ones.

∗ up to isomorphisms
16/33



Classification of quantum digital geometries for n = 3

We have considered each of the 6 commutative (A-F) and one
noncommutative (G) algebras with two dimensional Ω1 (the
universal calculus) and with 1 dimensional Ω1.

To keep things simple, for the universal calculus, we
considered geometries with basis ω1 = dx1, ω2 = dx2 for Ω1

and we take 1 dimensional Ω2
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Digital quantum geometries - one algebra example

From the 6 algebras (A - F) let’s choose algebra D (an
example of 3-dimensional unital commutative algebra with the
basis 1, x1, x2).

Relations: x1x1 = x2, x2x2 = x1, x1x2 = x1 + x2 = x2x1

Universal differential calculus with relations:

dx1.x2 = x1dx2 +dx1 +dx2, dx2.x1 = x2dx1 +dx1 +dx2

[dx1, x1] = dx2, [dx2, x2] = dx1

Basis of Ω1: ω1 = dx1, ω2 = dx2

This algebra (D) is isomorphic to F2Z3 the group algebra on the group
Z3 since z = 1 + x1 obeys (z)2 = 1 + x2 and (z)3 = 1.
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Quantum metric on F2Z3

We define a metric as an invertible element of g ∈ Ω1 ⊗D Ω1.

g = gijω
i ⊗ ωj = gµijx

µωi ⊗ ωj , gij ∈ D, gµij ∈ F2

Quantum metric (central and quantum symm.) on D = F2Z3:

gD = βz2ω1 ⊗ ω1 + βz(ω1 ⊗ ω2 + ω2 ⊗ ω1) + βω2 ⊗ ω2

with β - a functional parameter.

We take special cases for β = 1, z , z2

For these there are 12 QLC connections (11 of them not flat!
R∇ 6= 0 - purely ’quantum’ phenomenon.)
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Digital quantum connection and curvature

with the structure constants in F2:

∇ωi = Γi
νkmx

νωk ⊗ ωm, σ
(
ωi ⊗ ωj

)
= σijµkmx

µωk ⊗ ωm,

Γi
νkm, σ

ij
µkm ∈ F2.

For the curvature R∇ : Ω1 → Ω2 ⊗D Ω1:

R∇ = (d⊗ id− id ∧∇)∇

R∇ω
i = ρi jµx

µVol⊗ ωj = ρi jVol⊗ ωj

we require: ρi jµ ∈ F2.

For Ω2 = D.Vol we take 1-dimensional free module over D, with
the basis denotes as Vol
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Once we have specified at least Ω2, we can:

ask for our metric to be ‘quantum symmetric’ in the sense

∧(g) = 0

Look for a quantum Levi-Civita connection (QLC):
∇g = T∇ = 0



QLC connections and curvature on F2Z3
Recall: gD = βz2ω1 ⊗ ω1 + βz(ω1 ⊗ ω2 + ω2 ⊗ ω1) + βω2 ⊗ ω2.
For β = 1 one of QLC’s looks like this:

∇D.1.1ω
1 = z2ω1 ⊗ ω1 + (1 + z)(ω1 ⊗ ω2 + ω2 ⊗ ω1) + ω2 ⊗ ω2

∇D.1.1ω
2 = z2ω1 ⊗ ω1 + zω1 ⊗ ω2 + z2ω2 ⊗ ω1 + ω2 ⊗ ω2

R∇D.1.1ω
1 = Vol⊗ ω1 + z2Vol⊗ ω2, R∇D.1.1ω

2 = z2Vol⊗ ω1;

There are 3 more for this choice of β (none flat):

∇D.1.2ω
1 = z2

ω
1 ⊗ ω1 + z(ω1 ⊗ ω2 + ω

2 ⊗ ω1) + ω
2 ⊗ ω2

∇D.1.2ω
2 = z2

ω
2 ⊗ ω1

R∇D.1.2
ω

1 = R∇D.1.2
ω

2 =
(

1 + z2
)
Vol⊗ (ω1 + ω

2);

∇D.1.3ω
1 = (z + z2)ω1 ⊗ ω1 + (1 + z)ω1 ⊗ ω2 + zω2 ⊗ ω1 +

(
1 + z2

)
ω

2 ⊗ ω2

∇D.1.3ω
2 = z2

ω
1 ⊗ ω1 +

(
z + z2

)
ω

2 ⊗ ω1 + ω
2 ⊗ ω2

R∇D.1.3
ω

1 = Vol⊗ ω1 + z2
Vol⊗ ω2

, R∇D.1.3
ω

2 = z2
Vol⊗ ω1;

∇D.1.4ω
1 = (z + z2)ω1 ⊗ ω1 + zω1 ⊗ ω2 + (1 + z)ω2 ⊗ ω1 +

(
1 + z2

)
ω

2 ⊗ ω2

∇D.1.4ω
2 = zω1 ⊗ ω2 +

(
z + z2

)
ω

2 ⊗ ω1

R∇D.1.4
ω

1 = Vol⊗ ω1 + z2
Vol⊗ ω2

, R∇D.1.4
ω

2 = z2
Vol⊗ ω1

.

There are further 8 QLCs for β = z , β = z2 (only 1 flat).
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The Ricci tensor

Ricci = (( , )⊗ id)(id⊗ i ⊗ id)R∇

‘lifting’ bimodule map i : Ω2 → Ω1⊗A Ω1 such that ∧◦ i = id.

When Ω2 is 1-dim (with central basis Vol) then:

i(Vol) = Iijω
i ⊗ ωj , Iij ∈ A

for some central element of Ω1 ⊗A Ω1 such that ∧(I ) = Vol.

Then
Ricci = gij((ωi , )⊗ id)(i ⊗ id)R∇ω

j = gij(ω
i , ρj k Imnω

m)ωn ⊗ ωk .

I - not unique (we can add any functional multiple γg for
γ ∈ A if g is central and quantum symmetric)

23/33
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For D = F2Z3 we take

i(Vol) = z2ω2 ⊗ ω1 + zω2 ⊗ ω2 + γg

where γ ∈ D, γ = γ1 + γ2z + γ3z
2.
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Ricci tensor and scalar for F2Z3

Metric QLC Ricci (central for all γi ) S = (, )(Ricci) q. symmetric ∇ · Ricci = 0
gD.1
(β = 1)

∇D.1.2 Ricci = 0 S = 0 — —

∇D.1.1
∇D.1.3
∇D.1.4


Ricci =

(
γ3 + γ2z

2
)
ω1 ⊗ ω1

+
(
γ2z + γ3z

2
)
ω1 ⊗ ω2

+
(
γ1 + z + γ3z

2
)
ω2 ⊗ ω1

+
(

1 + γ3z + γ1z
2
)
ω2 ⊗ ω2

γ2 + γ3z

γ1 = 0, γ2 = 1 :
Ricci =

(1 + γ3z)z2ω1 ⊗ ω1

+(1 + γ3z)zω1 ⊗ ω2

+(1 + γ3z)zω2 ⊗ ω1

+(1 + γ3z)ω2 ⊗ ω2

γ1 = 0 = γ3 :
Ricci

= γ2z
2ω1 ⊗ ω1

+γ2zω
1 ⊗ ω2

+zω2 ⊗ ω1 + ω2 ⊗ ω2

gD.2
(β = z)

∇D.2.4 Ricci = 0 S = 0 — —

∇D.2.1
∇D.2.2
∇D.2.3


Ricci =

(
1 + γ3z + γ1z

2
)

ω1 ⊗ ω1

+
(
γ3 + γ1z + z2

)
ω1 ⊗ ω2

+
(
γ1z + (1 + γ2)z2

)
ω2 ⊗ ω1

+ (γ1 + (1 + γ2)z)ω2 ⊗ ω2

1 + γ2

+γ1z
2

γ2 = 0 = γ3 :
Ricci =

(γ1 + z)z2ω1 ⊗ ω1

+(γ1 + z)zω1 ⊗ ω2

+(γ1 + z)zω2 ⊗ ω1

+(γ1 + z)ω2 ⊗ ω2

γ1 = 0 = γ3 :
Ricci

= ω1 ⊗ ω1 + z2ω1 ⊗ ω2

+ (1 + γ2) z2ω2 ⊗ ω1

+ (1 + γ2) zω2 ⊗ ω2

gD.3

(β = z2)
∇D.3.1 Ricci = 0 (flat connection) S = 0 — —

∇D.3.2
∇D.3.3
∇D.3.4


Ricci = (γ1 + (1 + γ2)z)

ω1 ⊗ ω1

+
(

1 + γ2 + γ1z
2
)
ω1 ⊗ ω2

+ (γ2 + γ3z)ω2 ⊗ ω1

+
(
γ3 + γ2z

2
)
ω2 ⊗ ω2

1 + γ3z

+γ1z
2 never qsymm

γ1 = 0 = γ3 :
Ricci

= (1 + γ2) zω1 ⊗ ω1

+ (1 + γ2)ω1 ⊗ ω2

+γ2ω
2 ⊗ ω1

+γ2z
2ω2 ⊗ ω2

For each metric one connection is Ricci flat for all lifts (indep. of γi ).
dimD.1 = dimD.2 = 1,dimD.3 = 0.
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The Einstein tensor

Eins = Ricci + Sg

= (Ricciµij + SνgρijV
νρ
µ)xµωi ⊗ ωj

with Ricciµij , Sν , gρij , V
νρ
µ ∈ F2.

Note: the usual definition Eins = Ricci− 1
2Sg makes no sense

over F2.
Here we have only two choices, 0, 1, for the coefficient of Sg .
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We are interested in the values of Eins = Ricci + Sg

If Eins 6= 0 (as it would be classically for a 2D manifold) then
we look for choices of γ when

∇ · Eins = 0

where ∇· means to apply ∇ in the element of Ω1 ⊗D Ω1

(same as for the metric) and then contract the first two
factors with ( , ):

∇ · Eins = ∇ · Ricci + (( , )⊗ id)(dS ⊗ g) = ∇ · Ricci + dS .
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The Einstein tensor on F2Z3

Metric QLC Eins = Ricci + Sg Ricci qsymm ∇ · Eins = 0
gD.1 ∇D.1.2 Eins = 0 — —

∇D.1.1
∇D.1.3
∇D.1.4

 Eins = (γ1 + z(1 + γ2))ω2 ⊗ ω1

+
(

1 + γ2 + γ1z
2
)
ω2 ⊗ ω2 Eins = 0

γ1 = 0 :

Eins = (1 + γ2) zω2 ⊗ ω1

+ (1 + γ2)ω2 ⊗ ω2

gD.2 ∇D.2.4 Eins = 0 — —

∇D.2.1
∇D.2.2
∇D.2.3

 Eins = (γ2 + γ3z))ω1 ⊗ ω1

+
(
γ3 + γ2z

2
)
ω1 ⊗ ω2 Eins = 0

γ3 = 0 :

Eins = γ2ω
1 ⊗ ω1

+γ2z
2ω1 ⊗ ω2

gD.3 ∇D.3.1 Eins = 0 (flat connection) — —

∇D.3.2
∇D.3.3
∇D.3.4


Eins =

(
γ2z + γ3z

2
)
ω1 ⊗ ω1

+ (γ2 + γ3z)ω1 ⊗ ω2

+
(

1 + γ2 + γ1z
2
)
ω2 ⊗ ω1

+
(
γ1z + (1 + γ2)z2

)
ω2 ⊗ ω2

never qsymm

γ1 = 0 = γ3 :

Eins = γ2zω
1 ⊗ ω1

+γ2ω
1 ⊗ ω2

+ (1 + γ2)ω2 ⊗ ω1

+(1 + γ2)z2ω2 ⊗ ω2

Metrics where dim = 1 have zero Einstein tensor when Ricci is
lifted to be quantum symmetric.
The metric gD.3 where dim = 0 has two lifts for the non-flat
connections with ∇ · Eins = 0 and S = 1.



Digital Quantum Geometries on D = F2Z3:

for each metric one connection is Ricci flat for all lifts (and
only actually flat for gD.3)

and the other three connections all have the same Ricci
curvature

when Ricci is quantum symmetric (choice of γi ) then Eins = 0

we can chose the lift so that ∇ · Eins = 0

gD.1 : γ1 = γ3 = 0, γ2 = 1, Ricci = gD.1, S = 1, ∇·Ricci = 0, Eins = 0

gD.2 : γ1 = γ2 = γ3 = 0, Ricci = gD.2, S = 1, ∇·Ricci = 0, Eins = 0

gD.3 : γ1 = γ3 = 0, S = 1, ∇ · Ricci = ∇ · Eins = 0, Eins 6= 0

- the last case is unusual in that classically the Einstein tensor in 2D would

vanish , but this is also the ‘unphysical’ case where dimD.3 = 0.
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Similar results were obtained for two other (commutative)
algebras B = F2(Z3) and F = F8.

We have also investigated the properties of the geometric
Laplacians:

∆ = ( , )∇d : A→ A

For algebras A,C ,E ,G there are no invertible central metrics
for the universal calculus.

All results - see S.Majid, A.P., J.Phys. A 2019 (in press)
[arXiv:1807.08492].
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Summary

We have mapped out the landscape of all reasonable up to
2D quantum geometries over the field F2 on unital algebras
of dimension n ≤ 3.

In n = 3 with 2-dim Ω1 we find that only three of the six
algebras, namely B= F2(Z3), D= F2Z3, F= F8, meet our full
requirements on the calculus including Ω2 as top form degree
2 and existence of a quantum symmetric metric.

The interesting ones up to this dimension have commutative
coordinate algebras
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Conclusions

For each of them we find an essentially unique calculus and
a unique quantum metric up to an invertible functional
factor

When the quantum metrics admit QLC connections, each pair
produces ‘digital quantum Riemannian geometry’ of which
most are not flat in the sense of non-zero Riemann curvature
R∇

For the Ricci tensor: we have found 2, 2, 5 (for alg. B, D, F
resp.) - a total of 9 interesting Ricci flat but not flat
quantum geometries over F2.

These deserve more study in view of the important role of
Ricci flat metrics in classical GR (as vacuum solutions of
Einstein’s equations).
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Perspectives

Finite field setting allows one to test definitions and
conjectures - full classification possible.

Quantum gravity is normally seen as a weighted ’sum’ over all
possible metrics

once we have a good handle on the moduli of classes of small
Fpd quantum Riemannian geometries, we could consider
quantum gravity, for example as a weighted sum over the
moduli space of them much as in lattice approximations, but
now finite.

Thank you for your attention!
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