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Outline

1 Wormholes act as tunnels from one region of spacetime to
another, possibly through which observers may freely traverse.

2 Although we have a vague image of wormhole, there is no
universal definition which can work for general situations.

3 The idea is essential in science fictions as a way for rapid
interstellar travel, warp drives, and time machines. However,
wormhole is also a theoretical research topic with long history.
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Paging History

1. Einsteins General Theory of Relativity (GTR, 1915):
Einstein’s theory is that space and time can warp into each
other. In particular, the curvature of spacetime is directly
related to the energy and momentum of whatever matter and
radiation are present- physics is in the fabric of space-time.

2. Einstein-Rosen Bridge (1935): They constructed an
elementary particle model represented by a “bridge”
connecting two identical sheets. This mathematical
representation of physical space being connected by a
wormhole type solution was denoted an “Einstein-Rosen
bridge”.

3. John Wheeler (ca. 1957,1962): Wheeler considered
wormholes, such as Reissner-Nordström or Kerr wormholes, as
objects of the quantum foam connecting different regions of
spacetime and operating at the Planck scale. He first
introduced the the word “wormhole”.
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Criteria for Construction Wormhole

“Morris-Thorne framework” Am. J. Phys. 56, 395 (1988).

We should first begin by discussing the criteria for construction of
traversable wormholes:

1. Metric should be both spherically symmetric and static. This
is just to keep everything simple.

2. Solution must everywhere obey the Einstein field equations.
This assumes correctness of GTR.

3. Solution must have a throat that connects two asymptotically
flat regions of spacetime.

4. No horizon, since a horizon will prevent two-way travel
through the wormhole.

According to Morris and Thorne this is called “basic wormhole
criteria”.
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Criteria for Construction Wormhole Cont.

5. Tidal gravitational forces experienced by a traveler must be
negligible.

6. Traveler must be able to cross through the wormhole in a
finite and reasonably small proper time.

7. Physically reasonable stress-energy tensor generated by the
matter and fields.

8. Solution must be stable under small perturbation.

9. Should be possible to assemble the wormhole, i. e. assembly
should require both much less than the total mass of the
universe and much less than the age of the universe.

This is usability criteria of wormhole construction. since it deals
with human physiological comfort.
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Wormhole Modeling

The general static spherically symmetric wormhole solution with
usual spherical coordinates (t, r , θ, φ), we have the general metric

ds2 = −e2Φ(r)dt2 +
dr2

1− b(r)/r
+ r2(dθ2 + sin2 θdφ2) (1)

1. Φ is known as “redshift function”-related to the
gravitational redshift.

2. b(r)- is the “shape function”- it determines the shape of the
wormhole.

3. The coordinate r decreases from +∞ to a minimum value r0,
representing the location of the throat of the wormhole,
where b(r0) = r0, and then it increases from r0 to −∞.

4. proper circumference of a circle of fixed r is given by 2πr .
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Wormhole Modeling Cont.

An alternative way of expressing the above metric is

ds2 = −e2Φdt2 + dl2dr2 + r2(l)(dθ2 + sin2 θdφ2) (2)

where we have set the proper radial distance as

L(r) = ±
∫ r

r0

dr√
1− b(r)

r

(3)

which is required to be finite everywhere.

L(r) decreases from +∞ in the upper universe, to L = 0 at
the throat, and then from zero to −∞ in the lower universe.

For the wormhole to be traversable it must have no horizons,
which implies that gtt = e2Φ 6= 0, so that Φ(r) must be finite
everywhere.
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Wormhole Modeling

The mathematics of embedding and generic static throat

We can use embedding diagrams to represent a wormhole and
extract some useful information for the choice of the shape
function, b(r) and one may consider an equatorial slice, θ = π

2 ,
with a some fixed moment of time t = constant, the metric should
be

ds2 =

(
1− b(r)

r

)−1

dr2 + r2dφ2 (4)

To visualize this slice, one embeds this metric into
three-dimensional Euclidean space, in which the metric can be
written in cylindrical coordinates, (r , φ, z), as

ds2 = dz2 + dr2 + r2dφ2 (5)

Comparing both equations, we have the equation for the
embedding surface, given by
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Wormhole Modeling Cont.

The mathematics of embedding and generic static throat

Comparing both equations, we have the equation for the
embedding surface, given by

dz

dr
= ±

(
r

b(r)
− 1

)− 1
2

(6)

The geometry has a minimum radius, r = b(r) = r0 , denoted
as the throat.

Far from the throat consider that space is asymptotically flat,
dz
dr → 0, as r →∞.

To be a solution of a wormhole, one needs to impose that the
throat flares out. Mathematically, this flaring-out condition
entails that the inverse of the embedding function r(z), must

satisfy d2r
dz2 > 0 at or near the throat r0.
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Wormhole Modeling Cont.

Differentiating dr
dz = ±

(
r

b(r) − 1
) 1

2
with respect z , we have

d2r

dz2
=

b − rb
′

2b2
> 0 (7)

At the throat one can verify that the form function satisfies the
condition b

′
(r0) < 1.

These geometries also allow closed timelike curves, with the
respective causality violations. In a closed timelike curve, the
worldline of an object through spacetime follows a curious
path where it eventually returns to the exact same coordinates
in space and time that it was at previously.

These spacetimes is that they allow “effective” superluminal
travel, although, locally, the speed of light is not surpassed.
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Wormhole Modeling Cont.
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Einstein Field Equations

The system of equations are obtained as:

ρ(r) =
b
′

r2
− Λ, (8)

τ(r) =
b

r3
− 2

(
1− b

r

)
Φ
′

r
− Λ, (9)

pt(r) =

(
1− b

r

)[
Φ
′′

+(Φ
′
)2− rb

′ − b

2r2(1− b/r)
Φ
′− rb

′ − b

2r3(1− b/r)
+

Φ
′

r

]
+Λ

(10)
Here, τ(r) is the radial tension, with τ(r) = −pr (r)
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Eenergy Condtion

The energy conditions for the specific case in which the
stress-energy tensor is diagonal i. e.,

Tµν = diag(ρ, p1, p2, p3) (11)

where ρ is the mass density and the pi are the three principal
pressures.

1. Null energy condition (NEC): The NEC asserts that for any
null vector kµ: Tµνk

µkν ≥ 0.
In the case of a stress-energy tensor of the form Eq. (11) , we
have

ρ+ pi ≥ 0, ∀i (12)
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Eenergy Condtion Cont.

2. Weak energy condition (WEC): The WEC states that for
any timelike vector Uµ: TµνU

µUν ≥ 0.
Thus, the WEC requires that energy density to be positive. In
terms of the principal pressures this gives

ρ ≥ 0, ρ+ pi ≥ 0, ∀i (13)
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Exotic Matter

To gain some insight into the matter threading the wormhole,
Morris and Thorne defined the dimensionless function ξ = τ−ρ

|p| .
Using field equations one finds

ξ =
τ − ρ
|p|

=
b
r − b

′ − 2r(1− b/r)Φ
′

|b′ |
(14)

Considering the finite character of ρ, and therefore of b
′
, and the

fact that (1− b/r)Φ
′ → 0 at the throat, we have the following

relationship

ξ(r0) =
ρ0 − τ0

|p0|
< 0 (15)

The restriction τ0 > ρ0 is an extremely troublesome condition, as it
states that the radial tension at the throat should exceed the
energy density. Thus, Morris and Thorne coined matter restricted
by this condition “exotic matter”
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Exotic Matter Cont.

The wormhole material is everywhere exotic, i.e., ξ < 0
everywhere, extending outward from the throat, with ρ, tau
and p tending to zero as r → +∞.

Exotic matter is particularly troublesome for measurements
made by observers traversing through the throat with a radial
velocity close to the speed of light.

The energy density measured by these observers is given by

T00 = γ2(ρ2
0 − v2τ2

0 ) with γ2 = (1− v2)
−1
2 .

For sufficiently high velocities, v → 1, the observer will
measure a negative energy density, T00 < 0.

This feature also holds for any traversable, nonspherical and
nonstatic wormhole.
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Traversability Conditions

Traveller journeys radially through a wormhole, beginning at rest in
a space station in the lower universe, at l = −l1, and ending at
rest in a space station in the upper universe at l = +l2 .

Assume that the traveller has a radial velocity v(r), as
measured by a static observer positioned at r . One may relate
the proper distance travelled dl , radius travelled dr ,
coordinate time lapse dt, and proper time lapse as measured
by the observer dτ , by the following relationships:

v = e−Φ dl

dt
= ∓e−Φ(1− b/r)−1/2 dr

dt
(16)

vγ =
dl

dt
= ∓(1− b/r)−1/2 dr

dt
(17)
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Traversability Conditions Cont.

It is also important to impose certain conditions at the space
stations.

Consider that space is asymptotically flat at the stations, i. e.
b
r � 1.
The gravitational redshift of signals sent from the stations to
infinity should be small, i. e. 4λλ = e−Φ − 1 ≡ −Φ, so that
|Φ| � 1. The condition |Φ| � 1, imposes that the proper
time at the station equals the coordinate time.
The gravitational acceleration measured at the stations, given

by g = −(1− b/r)
−1
2 Φ

′ ≡ −Φ
′

should be less than or equal
to the Earths gravitational acceleration, g ≤ g⊕, so, that the
condition |Φ′ | ≤ g⊕.
The entire journey should be done in a relatively short time as
measured both by the traveller and by observers who remain
at rest at the stations.
Acceleration felt by the traveller should not exceed the Earths
gravitational acceleration, g⊕ .
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Solutions

In this work, the shape function b(r) = r0 log(r+1)
log(r0+1) is considered, and

the variable redshift function Φ(r) is defined as Φ(r) = − 1
r2 . Using

these shape and redshift functions, the field equations are solved
and the energy condition terms are derived which are as follows:

ρ =
1

ω + 1

[
4
(

1− r0 log(r+1)
r log(r0+1)

)
r4

− r0 log(r + 1)

r3 log(r0 + 1)
+

r0
r2(r + 1) log(r0 + 1)

]
(18)

pr =
ω

ω + 1

4
(

1− r0 log(r+1)
r log(r0+1)

)
r4

− r0 log(r + 1)

r3 log(r0 + 1)
+

r0
r2(r + 1) log(r0 + 1)

(19)
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Solutions Cont.

Λ =
r0

r2(r + 1) log(r0 + 1)
− 1

ω + 1

[
4

r4

(
1− r0 log(r + 1)

r log(r0 + 1)

)

− r0 log(r + 1)

r3 log(r0 + 1)
+

r0
r2(r + 1) log(r0 + 1)

]
(20)

Gauranga C Samanta Wormhole Modeling in General Relativity



Solutions Cont.

pt = − 4

r4

(
1− r0 log(r + 1)

r log(r0 + 1)

)
+

r0 log(r + 1)

r3 log(r0 + 1)

+
ω

ω + 1

(
4

r4

(
1− r0 log(r + 1)

r log(r0 + 1)

)
− r0 log(r + 1)

r3 log(r0 + 1)
+

r0
r2(r + 1) log(r0 + 1)

)

+

(
1− r0 log(r + 1)

r log(r0 + 1)

) 4

r6
− 1

r5
(

1− r0 log(r+1)
r log(r0+1)

)
×

(
r r0

(r + 1) log(r0 + 1)
− r0 log(r + 1)

log(r0 + 1)

)
− 4

r4
− 1

2r3
(

1− r0 log(r+1)
r log(r0+1)

)( r r0
(r + 1) log(r0 + 1)

− − r0 log(r + 1)

log(r0 + 1)

))
(21)
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Conclusions

This work is focused on the investigation of traversable
wormholes introduced by Morris and Thorne in the presence
of cosmological constant.

Thorne with his student Morris constructed traversable
wormholes with two mouths and one throat.

They considered static and spherically symmetric wormholes
with constant redshift function and, obtained the presence of
the exotic matter at the throat of the wormholes.

Eventually, they concluded that the presence of exotic matter
at the throat is necessary for the construction of traversable
wormholes in general relativity, i. e. near the throat of the
wormhole the material must hold the radial tension exceed the
mass energy density (τ0 > ρ0c

2), which indicates the violation
of the null energy condition near the throat of the wormholes.
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Conclusions Cont.

However, in this work we tried to construct a traversable
wormhole by avoiding exotic matter. Therefore, in this work,
we constructed traversable wormholes in general relativity
with cosmological constant by assuming variable redshift and
shape functions.

The main motivation of this work is to minimize the exotic
matter near the throat of the wormholes.

In this work, variable redshift and shape functions are used to
construct a traversable wormholes in general relativity with
cosmological constant.

The null, weak, strong and dominated energy conditions are
analysed and spherical regions satisfying the null, weak and
strong energy conditions with positive cosmological constant
are obtained.
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Conclusions Cont.

It is found that wormholes filled with non exotic matter
satisfying NEC and WEC with positive value of cosmological
constant exists for r ≥ 0.1.

Hence, this study concludes the exotic matter could be
avoided in the construction of traversable wormholes in
general relativity by introducing cosmological constant and
suitable choice of variable redshift and shape functions.
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THANK YOU
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