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Some developments of Non Equilibrium Quantum Field Theory
considering Quantum wires in the form of Star Graphs

Continuation of a program started about 20 years ago with M.Mintchev and other collab.
(E.Ragoucy, M.Burrello, B.Bellazzini, L.Santoni):

i) Algebraic framework for dealing with defects in 1+1dim., introducing the “reflection-
transmission” or “R-T” algebras, powerful approach to integrable systems with impurities.

ii) With on gquantum graphs, formalism for
, complete and determination of
physical quantities i.e. in different models.

(cf. “Quantum Wires” seminar at MPHYS 6 (2010))

Quantum networks first applied to electron

transport in organic molecules, then appeared in
interacting 1 dim. electron gaz. Applications due
to rapid progress in nanoscale quantum devises.




iii) Non Equilibrium Quantum Systems with thermal reservoirs at
the edges of the network.

What we have done:

- an explicit construction in field theory of Non Equilibrium Steady States -
or NESS,

- a study of microscopic features of quantum transport and entropy
production.

Based on:



Quantum transport in systems of the type:
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® 2 oriented leads L; conecting via the gates G; 2 heat reservoirs
Ri = {B1,p1} (cold) and Ry = {32, 2} (hot)

with the interaction domain 1J;

® R; have a large enough capacity such that the particle emission/absorption
through G; does not change the parameters | 3;. i };

Realistic (essentially 1+1 dimensional) systems modelled by this setup:
® fermionic junctions - quantum nanowires;
® bosonic junctions - ultacold Bose gasses in one-dimensional laser traps;

® anyonic junctions - quantum Hall edges;

Previous results: mean value of charge and heat currents and the associated noise;

Goal of this study: develop a systematic microscopic approach to explore
quantum fluctuations of both currents and entropy production.



Basic microscopic aspects:
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® Nontrivial particle (1 # po2) and heat (31 # 32) currents are flowing in the
system

® The microscopic origin of these currents are three kinds of processes:

® emission and absorption of n particles from the same reservoir —-
vanishing entropy production

® emission of n particles from R[> and absorption in K} — positive entropy
production;

® emission of n particles from R; and absorption in R == negative entropy
production;

® Each of these processes is characterised by some probability p,:
P={pp,: n=0,£1,£2, ...},
® Universal feature of P: fully codifies

® 2all kinds of quantum transport: charge, energy and heat;

® the entropy production - key quantity quantifying the departure from
equilibrium;

® 3all the quantum fluctuations.

Problem: derive the set P - QFT approach.



QF T strategy - three steps:

® derive the n-point correlation functions
wn[C]{tl,xl, rn,xn) = {q{tl,xl, f:] IO t‘_;l{fnu'-"-'n)}fz . n= 1,2,
of the particle current and the entropy production operators:
C(ty.x1.0) = j(t1,x1. 1), C:{Il,:{],f}:.é(t[,xl];

wp[(] are the moments M, [(] of a probability distribution {D, o[(]}

wil¢] = /p do o™ o[C)(e) = MalC]

® reconstruct o[(] from M [(] (solve the moment problem);
® extract from the distributions o[(] the microscopic information:
{pn : n=0,£1,4+2, ...}, R; ++ R> emission — absorption probabilities

{on : n=0,£1,4£2, ...}, associated entropy production

Plan of the talk - above points 4 applications:



Zoom in on the first step:

The derivation of the correlation functions
Wn[jj](tl:,}'{l, =eey rﬂ:x”} — U(ELXI-. .f) n 'j{r-"hxﬂ-_ F}}ﬂ y

Wn[ﬁl{flsxlv ooy Ty Xn) = (5(f1~xl} o -é(fn-.xn}}ﬂ )

is based on two ingredients:

® the observables in terms of the basic fields of the theory (e.g. fermions, bosons,
anyons,...):

® j(t,x.i) - particle current (local information about the lead L;);
® 5(t,x) - entropy production (global information about the whole system);

j,S,... € A - the algebra all observables of the system

® 3 state {2 for computing the expectation values (- -- g

® in other words, one should fix a representation = : A — H;
® choose m which fits better the physical situation in consideration;

® our case - generalise the Gibbs representation to the case with two heat
baths R; interacting with &

Landauer-Butticker representation: T g [3i. i, S

® symmetries play fundamental role in this step.



Symmetry content - continuous symmetries:

We shall consider systems preserving:

the particle number N: — Oefr — Oxjx =0

the total energy E: — Ottt — Oxlblxe =0

N =o0: — Y2 j(t,G.i)=0
E =0: — 52 Oke(t, G i) =0

With these two very general assumptions the junction operates as
dissipationless converter of heat to chemical energy or vice versa.

the reason is that the heat curred@pez une équation icj, = 6,; — p;jy
and the chemical potential current Ky = Iijx
are locally conserved but

2 2
D ge(t, Gi, i) = = ka(t, Giy i) = (p2 — pa)jx(t, G1, 1)# 0, g # po;
i—1 i—1

energy conversion - controlled by the operator: @ = — Z?:l qx(t, G;,i);
let W = H be any state of the system;
(@) <= 0, heat energy — chemaical energy ,
@)y = 0, chemical energy — heat energy .

energy conversion: universal - holds for any dynamics in [ respecting the
symmetries;



Symmetry content - discrete symmetries:

® time reversal - essential for entropy production;

® time reversal operation - anti-unitary operator T, such that
le:f,x, ::I T_l — _j(_tﬁx! f} :
® suppose that: G(t,x,i))a#0;

® time translation invariance — (j(t,x.i))q is t-independent;

[
TQ #Q

® origin of non-vanishing entropy production
" " 2

(S(t,x,1))a#£0, S=-> Biq(t,x,i);
i=1

® QFT effect: no need of explicit T-breaking via dissipation:

® external classical fields (magnetic field);
e other quantum systems.



Summarising, systems of the type

which preserve

® total energy

® particle number

have the following universal model independent features:

® convert heat to chemical energy or vice versa without dissipation;

® produce entropy without explicit time reversal breaking.

Rest of the talk: illustrate these general features on concrete examples controlling:

® the spectrum of H - to be sure that there is no dissipation;

® time reversal invariance THT ~! = H - to be sure that the entropy production is
a consequence of spontaneous breaking.



Example - fermionic/bosonic Schrodinger junction:

G G
G =@, 2)

® 1) shrinks to a point x = 0 - exactly solvable model:

® mathematically very clean;
® jllustrates the universal aspects,
® jllustrates the impact of statistics;

® dynamics on the leads:
1
(iﬁt + 2—8)2,:) (L. x,i) =0, (x <0 :i=1,2) local coordinates on L;;
m

® statistics - fermionic + or bosonic — junction

[T.L'(t!xif}:l t.f’r*(rr}":j)]: :'ﬁuﬁ{x _}") .
® point-like interaction - boundary condition (U € U(2), A-free parameter):

2
lim >~ [MI—U)j +i(1+ U);0x] ¥(t,x,j) = 0;

x—0— i1

® this is the most general b.c. ensuring the self-adjointness of the Hamiltonian;
® interaction - the associated scattering matrix is (Kostrykin-Schrader 2000):

AI-U) - kI+ D)

S =~ a0y




The solution in absence of bound states of S:

w(t, x,i) = J‘oo dk g-iw(k)t-ikx g (k), w(k) = ;2
m

- o0 21T

* {ai(k), a"(p)} generate the (anti)commutation relation algebras A = and satisfy
[ai (k) , a*(p)]+ = 2m[3;B(k - p) + S;j(K)3(p + k)] .

constraints: a;(k) = Sjj(k) ai(-k) ; a;" (k) = a;"(-k) Sji(-k)

* interaction codified in the algebra - greatly simplifies the analysis;
* observables:

* particle current
(X, 1) = 50 W (Oxy) - @xy)YI(t, x,i);
* energy current

th(t, X, |) =
am (O @) O w) + (B w) (B, ) - (B0, YW~ W@ B WI(t xi);
* heat current Ox(t, X, 1) = Bxe(t, X, 1) = Mijx(t, X, 1);
e entropy production operator S(t,x) = - Z Bigx(t, x, i)
i=1,2

* fix arepresentation of A + .



Algebraic construction of the NESS:

Consider the incoming sub-algebra A" . = {a;(k), aj (k) : k > 0} associated to K; and perform
the following three steps:

@® take the Gibbs state S'EJ u, over *E_J-;

(ﬂ:ﬁ';-.ﬂ.‘ : mﬂ;ﬂ;-w’) = (O) g, = %Tr [E_ Im] : Z="Tr [E_HJ] 3

O

— Bihi — piqi), hi= f“”—w(k}a (K)ai(k), qi= / o (K)ai(k).

. n .
@ perform the tensor product ﬂm‘H = @i_1 QL3 4

@ extend Qm by linearity to a state {15 , on the whole algebra A using the scattering
relations

y ai(k) =Y _Sy(k)aj(—k),  aj(k)=D_a'(—k)Si(k);
j=1

j=1



The LB non-equilibrium steady state:

® the Landauer (1970)-Biittiker (1986) (LB) representation w5 of A+ ;
® the basic correlator in the Fermi/Bose (=) LB state 27 is:

(af; (ki)am; (P1) - -~ @] (kn)am,(Pn))i Y s ki >0.p; >0

® introduce the matrix

L [2mb(ki = py)dym, d, lw(ki)] i<j,
T\ F2moki — p)oymy (LF GEL(k]) s P>,

1
T,y —
di(w) = eBilw—pr) £ 1

J. (for bosons u; < 0)

being the Fermi/Bose distribution of the reservoir R,.
® then,
det [M*],

(a7, (ks )am, (p1) - - i, (kn)am, (Pn)) 5, = {; .

® permanent:

n
perm [M] = Z HMFJJ : Pn — set of all permutations of n elements.
aiePpi=1



One-point correlators in the LB state:

o (j(t,x 1), = —i(t,x, ), =[5 92I812(vV2mw) P[d; (w) — d (w)] # 0;

® r-independent because of energy conservation;

® x-independent because of particle number conservation;

e £ ( provided that 3; # 3> and/or ;1 # o (away from equilibrium);
® time reversal is spontaneously broken;

® the origin of nontrivial entropy production in the system;

{5“!;{}}& = [0 dw 2 S12(vV2mw) [?[y2(w) — y1(w )][di( ) — dgi(w]]i 0;
vi = Biw — pi)

® the mean entropy production is non-negative;

® on this ground a junction converting heat in chemical energy can be
considered as a “heat engine” (mechanical energy — chemical energy);

® this microscopic “engine” consists of a single point-like quantum defect;

® the question of efficiency - discussion in what follows.



Correlation functions with n > 2 - quantum fluctuations:

® properties of w,f'f_)z[S'] - depend on x; and the time differences &; = t; — tj;1:

® zero-frequency limit

[n w] [n u] . - - .
Iim/ drl---/ dt,_je W atIn-1)ywE18] (11, xq, ..., tn, Xn)

v—0+ J_ oo
— [ MEISIe)

® significant simplification - x;-independendence;

® comments:

® at low frequencies the fluctuation are integrated over long period of time;

® regime explored in full counting statistics and transport experiments
(weak signals);

® the bound states of S do not contribute in the limit »» — 0O;

MF[S] are the moments of the probability distribution o[S] we are looking for.



The moments M=[ S]:

® the explicit form of {a’,“i(kljaml{p]} -+~ ay (kn)am, (pn}}fﬁ implies

: ~8 det[D™ (w; ki, ....Ih)],
..f'vfni[S]: fil{w} et[D {i-*‘ 1.. )]
H."El{w} pEI‘ﬂ"I[]D' {m- ',11 meey "‘ﬂ'}] :
with Yi(w) =i —v = (Bi — Bj)w — (Bini — Bjny)

® ~ji(w) - basic dimensionless parameter characterising the transport of a
particle from the reservoir R; to R;;

Iy (@)dif (), i<J,

][I:'F:E(LIJ,." ,...,."-n} = . .
yre {ZF.]]{,:,-(L'-’) [1¢df{w}} P>,

with Ji1(w) = —J22(w) = [S12(V2mw)|? = 7(w),
Ji2(w) = I (w) = —S11(v2mw) S12(v2mw) ,
® 7(w) - transmission probability (7(w) = 0 - isolated leads);

Main observation: using the above representation, one can prove ([1], [2] for details)
the bound

ME[S] >0, n=,12,...



Comments about the entropy production bound:
Mi[S]=0
® the quantum fluctuations do not alter the behaviour of the mean value .Mf':[S'];
® the bound holds for both fermions and bosons;
® the equality = holds only at equilibrium;

® the entropy production bound is not shared by the particle and heat current
fluctuations;

® tempting interpretation - a quantum version of the second law S_; > 0
(further comments on that later);

® in this spirit the bound can be used for selecting non-equilibrium states;

® uncover the microscopic origin of the bound - investigate the probability
distribution o=[S] generating the moments M7 [S]:

® start with the moment generating function ~[5].



The moment generating function \i[S]:

® the whole information from the moments is stored by the moment generating
function

YE[SI(N) = 0 {1‘:' MZE[S]; from now on the w-dependence is implicit

® using the determinant/permanent representation of .;'-./ini[S'] one finds:
XxT[S)(A) =1 +ic VT sin(A21v7T) + ¢ [cos(My21vT) — 1]

1

“[S)(\) = .
X181 1 —ic /Tsin(Ay21/T) — ¢ [cos(Ayo1y/T) — 1]

® dependence on:

® the heat baths distributions via:
¢ =dif —di, o =di +di T2 d5;

® the entropy production unit ~12 = [(B2 — B1)w — (Bop2 — B1p1)]VT;

® transmission probability 7 characterising the interaction.



The probability distribution o*[S]:

® the final step towards the probability distribution o= [S] is the Fourier transform

. 7 dA —1Ao -
FI8I0) = [ e EISION.
0 27
® =[ji] is a periodic function in A with period 27 /\/T;
® accordingly, the Fourier transform is a superposition of 4-functions - Dirac comb:

® the fermionic comb has three “teeth”

1
ot [81(0) = 3 By 6o — k7).

k=—1

because only single particle processes are allowed by Pauli’'s principle since
the energy w is fixed and there is no degeneracy in spin and momentum;
® the bosonic comb has infinite “teeth” because multiparticle processes are

allowed:

I8l0) = > by 8o — ko),

K=—10D0

° p:—' are the probabilities we are looking for;
® kv21+/7 is the entropy production associated with p,~.



Explicit form of the sets P~:

® fermionic probabilities: pli=3(c FefvVT), pf=1—¢
with: cfzdf—d;, c;Edl“L—l—d;—Qd;’d;;
Py 20, 1P =1
bﬂ
® bosonic probabilities: Pin=7 £ LF [%# n+1,4byb_]
4,
. (e, Lecg +/T) L, _ -, _ o
P =0, 2Py =1,

b p;t - probabilities of the basic microscopic processes of emission and absorption
in terms of the Dirac/Bose distributions dr.ﬂ: and the interaction T;

® p;t carry the information of all quantum fluctuations;

® relative simplicity of p;{" with respect to p, - consequence of Pauli principle.



The smeared distributions o*[S]:

® since p~[S] are singular, it is convenient for physical considerations to perform a
smearing;

5(0) — da(0) = 5= e with o > O:

® one gets the smeared distributions o= [S] approaching o=[S] for o — .

] . . . . i} 06
0.25F \ 0.5t
n.zn% J || 04l
g |:|.15§ ) \ a 03f
D.1D;— I \ 0.2k ‘
0.05f ' /\_ 0.} F|‘ | MM
DDD: A /} II\ .f"ll ] 0.0 ||.J || A hl‘..’lﬂ.ﬂ."“““
-15 10 -5 0 5 10 15 -5 0 5 10
o [

® the peaks are associated with the fundamental emission-absorption processes;
® the predominant process is the emission and reabsorption by the same reservoir;

® the right and the left pea ks are symmetric with respect to ¢ = 0 and the right
ones dominate — ‘VI 1[.’5] > 0.

. “v’[i' [S] > 0 because gi [S] is a true distribution and not a quasi-probability (in
the sense of Wigner) distribution.



Application - fluctuation relation:

® conventional fluctuation relation (Evans, Searles, Gallavotti, Cohen, Crooks,
Jarzynski,... )

P[-S -
P[S:‘-‘-‘U] S—oo

® the fluctuation relation in our system;

vi = Bilw — pi) 0 <SS — oo <= keep 7 fixed and take o — oo
- +
. — P 1(v1:7v2.7) — ST
® fermions: Friol — T 11 VT . 0
Pr [5=0] Py (v1yv2.7) & vo0 VT r—1

® bosons:

P [—5] L ZE; Pik{’]“_l ¥Y257T) . (T+e™ —1)— -.'F.-"'q-|:7-_|_{_«’?l —1) . 0

Pb[S-}ﬂ] - ZF{D‘;I P;{I_{TI:TE:-T} 54‘,_:;‘__' 1+ wf? 7-_-,';]_

® conventional fluctuation relation - recovered in the homogeneous limit 7 — 1;

® mpact of defects - needs further investigation.



Application - efficiency of quantum transport:

® mean value efficiency (Casati, Benenti, Saito, Prosen, Seifert,...)
® use that the mean entropy production is non-negative

(S) > 0;

® on this ground a junction converting heat in chemical energy, namely
(@) <0
can be considered as a heat engine (mechanical energy — chemical energy);

® et K, be the set of positive heat currents. Then

()
Diex. (q()
e (S) > 0 implies the Carnot bound:
51
O<np<l—r=mn,, I"ES—, B2 = pB1;
=2

® |imitation of n: does not take into account the essence of quantum physics -
the fluctuations.



Efficiency beyond the mean value description:

® concept of efficiency which takes into account all quantum fluctuations;

® take advantage of the microscopic picture which provides separately the total
rate of positive and negative entropy productions (~31 > 0):

alS > 0] = fﬂ dwynvT Y kpk, oS < 0] = _/n dwyivT Y kpk;
k=1 k=1

® we have shown that Ttot = 0[S > 0]+ 0[S < 0] >0;

® define on this basis an efficiency £, such that:
(J0<e<;
(ii) £ is maximal at minimal total entropy production oiot;

(iii) £ — 1 in the reversibility limit oyor — 0.

® the simplest candidate is:

 —als<0]
T oS>0
® in order to compare with i we introduce also
., —a[S < 0] A
o— d 1—!"‘*’-_: . F=—, -'32:_}.31;
7[S > 0] ( ) UTs B, !

satisfying the Carnot bound by construction.



Plots illustrating = and £":

® analitycally £ and =’ are complicated (integration in w), but numerics works well.

1|D_I|||I|||I|||I|||I|||I 1|ﬂ

0.8 0.8},

0.E[ o6l

ty iy

O4r 0.4

0.2} 0.2}

0ok : s : . . . - . . . ]
0,0 0,2 0.4 0. 0.8 1.0 G'ﬂﬂ.u 0.2 0.4 0.6 0.8 1.0

® typical behaviour of the efficiencies £ (left panel) and £’ (right panel):

® for fermions - red line;
¢ for bosons - blue line;
® Carnot bound - black line:

® 5ca =1 —+/r is the Curzon-Ahlborn bound (endoreversible
thermodynamics) - black dashed line;

® quantum fluctuations allow to exceed the CA bound;

® this is not the case in the mean value regime.



Summary and outlook:

Interaction Domain I

® we developed a microscopic QFT approach to quantum transport based on the
emission/absorption probabilities from the reservoirs;

® the proposed framework describes in a systematic way the quantum fluctuations
at any order;

® we have seen that quantum systems of this type have two universal features:

e transform heat to chemical energy or vice versa without dissipation;

® produce entropy without explicit time reversal breaking.

® in this context we explored:
® the fluctuation relations in a presence of defects;

® 3 concept of efficiency beyond the meal value description;

® as expected, quantum statistics have a relevant impact in this context;



Further developments:

Non-equilibrium quantum thermodynamics - a new branch of quantum physics
Basic open question - properties of the operator S(quantum second law?).
Lesson from this investigation: study the probability distribution p [S]: Test other models
and non-equilibrium states.

extend the above analysis to finite frequencies v = 0:

experimental progress - Kolkowitz et al, Science (2015), Tikhonov et al, Nature Sci. Rep.
(2016), Weng et al, Science (2018);

partial theoretical progress - a bound state with energy -w, < 0 hasa
specific impact on the particle noise at frequency v > wy;
bound state spectroscopy — Mintchev, Santoni, S.  (2017);

* analyse more generaldomainsD = [a,b]and D = R:

statistical interaction - anyon Tomonaga-Luttinger liquid:

- quantum transport of anyon fluid in R — Mintchev, S. (2013).
Lieb-Liniger model in R (integrability): Calabrese et al. (2018) the

distribution p[y*W] - turns out to be a Dirac comb;

p[S]- still an open problem;



Many thanks for your attention
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