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The Dirac equation
Introduction

The Dirac equation

iγaDaψ − mψ = 0

it results from the gauge invariant action

S =

∫
d4x
√
−g
{

i
2
ψγaDaψ −

i
2

( Daψ )γaψ − mψ̄ψ
}

and can be written explicitly as

(iγaeµa ∂µ − m)ψ +
i
2

1√
−g

∂µ(
√
−g eµa )γaψ

− eγaeµa Aµψ −
1
4
{γa, S b

c}ω c
abψ = 0
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Black Holes
The general line element

Let us assume that a Dirac particle of mass m is moving freely (as a
perturbation) in the central gravitational field of a spherically symmetric
black hole of mass M with the line element

ds2 = h(r)dt2 − dr2

h(r)
− r2 (dθ2 + sin2 θdφ2)

For the Schwarzschild black hole:

h(r) = 1− 2M
r

For the Reissner-Nordsrtöm black hole:

h(r) = 1− 2M
r

+
Q2

r2
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The Dirac equation
Definition of the Cartesian gauge

The tetrad fields êa(x) = êa
µdxµ (i.e. the 1-forms) defining the Cartesian

gauge are

ê0 =
√

h(r)dt

ê1 =
1√
h(r)

sin θ cosφ dr + r cos θ cosφ dθ − r sin θ sinφ dφ

ê2 =
1√
h(r)

sin θ sinφ dr + r cos θ sinφ dθ + r sin θ cosφ dφ

ê3 =
1√
h(r)

cos θ dr − r sin θ dθ

In this gauge the Dirac equation is completely covariant under rotations
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The Dirac equation
Separation of variables

Particle-like energy eigenspinors of positive frequency and energy E (I. I.

Cotaescu, Mod. Phys. Lett. A 22, 2493, 2007)

ψ(x) = ψE,j,m,κ(t, r, θ, φ)

=
e−i E t

r h(r)1/4

[
f+E,κ(r)Φ+

mj,κ(θ, φ) + f−E,κ(r)Φ−
mj,κ(θ, φ)

]
f±E,κ(r) - radial wave functions.

Φ±
mj,κ(θ, φ) - usual four-component angular spinors.

The antiparticle-like energy eigenspinors can be obtained directly using the
charge conjugation as in the flat case:

VE,j,m,κ = (ψE,j,m,κ)c ≡ C(ψ̄E,j,m,κ)T , C = iγ2γ0
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Black Holes
Exact radial equations

The radial Dirac equation m
√

h(r) + V(r) −h(r) d
dr + κ

r
√

h(r)

h(r) d
dr + κ

r
√

h(r) −m
√

h(r) + V(r)


 f+(r)

f−(r)

 = E

 f+(r)

f−(r)


The resulting radial problem cannot be solved analytically as it stays forcing
one to resort to numerical methods (S. Dolan, et. al., Phys. Rev. D 74, 064005,

2006) or to some approximations (I. I. Cotaescu, Mod. Phys. Lett. A 22, 2493, 2007)

introducing Novikov-like variables

x =

√
r

r+
− 1 ∈ (0,∞)

for Schw. BH: r+ = 2M and for RN: r+ = M +
√

M2 − Q2
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The Dirac equation
Solutions in black hole geometries

The radial wave functions solutions to the Dirac eq. (for the discrete energy
spectrum, µ > ε ) can be expressed in terms of Hypergeometric functions

1F1.  f+b (x)

f−b (x)

 =

 −√µ+ ε
√
µ+ ε

√
µ− ε

√
µ− ε

 f̂+b (x)

f̂−b (x)


where µ = r+m, ε = r+E and

f̂+b (x) = C+(2ν)s+ 1
2 x2se−νx2

1F1(s− p + 1, 2s + 1, 2νx2)

f̂−b (x) = C−(2ν)s+ 1
2 x2se−νx2

1F1(s− p, 2s + 1, 2νx2)

These solutions constitute the starting point for our study of the quasibound
states in Schwarzschild and Reissner-Nordstrom black hole backgrounds.
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The Dirac equation - solutions
parameters

The normalization constants satisfy the conditions:

C−

C+
=

ν(s + p)

κν + βµ− ζε

and the parameters involved are

s =
√
κ2 + ζ2 − β2, p =

βε− ζµ
ν

, ν =
√
µ2 − ε2

ζ =
1
2
µ(1− r−

r+
), β = ε− eQ, r± = M ±

√
M2 − Q2
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Energy of the quasibound states

The radial functions f̂±b (x)

f̂−b (x) = C−(2ν)s+ 1
2 x2se−νx2

1F1(s− p, 2s + 1, 2νx2)

are similar to the wave functions for a Dirac particle moving in a Coulomb
potential.

For obtaining the (quasi)bound state energies of fermions in the RN
geometry we impose the standard quantization condition:

s− p = −nr
√
κ2 + ζ2 − β2 − βε− ζµ

ν
= −nr

with nr = 0, 1, 2, 3... the radial quantum number.
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Energy of the quasibound states
Limiting cases

The quantization condition s− p = −nr can be brought into the form:

ε

µ
=

1−

(
β εµ − ζ

nr +
√
κ2 + ζ2 − β2

)2
 1

2

Assuming that the energy of the quasibound state is close to the rest energy
of the fermion mc2 and taking the limit ε→ µ we obtain:

E
mc2 =

1−

(
µ− eQ− ζ

nr +
√
κ2 + ζ2 − (µ− eQ)2

)2
 1

2

that gives the energy of the quasibound state for a fermion in
Reissner-Nordström geometry.
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Energy of the quasibound states
Limiting cases

The Schwarzschild result for the energy of a quasibound state (I. I. Cotaescu,

Mod. Phys. Lett. A 22, 2493, 2007)

E
mc2 =

1− µ2

4
(

nr +
√
κ2 − 3

4µ
2
)2


1
2

is recovered by canceling the black hole’s electric charge Q = 0.
Taking the limit M → 0 we obtain the discrete energy levels of the
relativistic Dirac-Coulomb problem:

E
mc2 =

1−

(
eQ

nr +
√
κ2 − (eQ)2

)2
 1

2

≈

1 +
Z2α2(

nr +
√
κ2 − Z2α2

)2


− 1

2

, Q = Ze = Z
√
α
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Energy of the quasibound states
Discussion of the results

The quantization condition eq. s− p = −nr can be solved analytically (for
nr = 0) or numerically (if nr 6= 0).

The energy of the ground state (nr = 0) results to be:

E0

mc2 =
mM · eQ±

√
κ2 [(mM)2 + κ2 − (eQ)2]

(mM)2 + κ2

By imposing the condition

−
√
κ2 + (mM)2 < eQ <

√
κ2 + (mM)2

the ground state will always have a real energy, otherwise the energy of the
state becomes complex.
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Energy of the quasibound states
Discussion of the results

the states are labeled with the standard spectroscopic notation nLj.

the energy state 1S1/2 corresponds to the set of quantum numbers
(n = 1, l = 0, j = 1/2, κ = −1)

Figure: Comparison of the Reissner-Nordström ground state energy with the relativistic
Dirac-Coulomb energy for the 1S1/2 state (left panel), respectively for the 2P3/2 state (right
panel).
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Energy of the quasibound states
Discussion of the results

Figure: The energy spectra for Schwarzschild quasibound states (left panel), respectively for
Reissner-Nordström quasibound states (right panel) as functions of the gravitational coupling
αg = mMG

~c for states with nr = 0.
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Energy of the quasibound states
Discussion of the results

Figure: The energy spectra for Schwarzschild (left panel) and Reissner-Nordström (right panel)
quasibound states as a function of the gravitational coupling αg = mMG

~c for states with nr 6= 0.
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Energy of the quasibound states
Discussion of the results

Figure: Comparison between the real part of the energy spectra of a Schwarzschild and
Reissner-Nordström 1S1/2, 2P3/2, 3D5/2 quasibound states for: eQ = ±10α (left panel),
respectively for eQ = ±25α (right panel). We observe that the spectra of RN quasibound states
compared with the Schwarzschild one, is higher if the fermion and the black hole have the same
type of charge (i.e. eQ > 0) (left panel), respectively is lower for the opposite case for which
eQ < 0 (right panel).
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Energy of the quasibound states
Discussion of the results

Figure: The energy spectra of the 1S1/2 quasibound state for a Reissner-Nordström black hole
charged with positive or negative charges. In the left panel we observe that as eQ increases the
spectra can have the same energy at two different values of the gravitational coupling
αg = mMG/~c.
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Conclusions

Obtaining the discrete quantum modes of the Dirac equation in a
Reissner-Nordström background;

Obtaining the (quasi)bound states of the Dirac field in Reissner-Nordström
black hole geometry;

Finding an analytical expression for the energy of the ground state;

Reissner-Nordström quasibound states have higher energies compared with
the Schwarzschild quasibound states if the black hole and the fermion have
chargees with the same sign, otherwise the energy of the state is lower.;
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The end

Thank you for your attention!
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to infinity and beyond..

∞
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