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Intro

Discrete properties of leptons and quarks:

They are due to certain symmetry groups and representations.

Why these groups, and why these representations?
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Intro

This can be partially explained by grand unified theories (GUT)
like SU(5) (Georgi and Glashow 1974) and SO(10) (actually Spin(10))
(Georgi 1975; Fritzsch and Minkowski 1975).

All such models based on a simple gauge group predict still un-
detected additional interactions and proton decay.

But they contain important insights for future developments.
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Intro

But what if there is a simple mathematical structure which

• has the symmetries of the Standard Model,

• provides the right representations automatically,

• and predicts no additional particles and forces?
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Result

A three-dimensional Hermitian space χ determines a Clifford al-
gebra C`

(
χ† ⊕ χ

)
, which is naturally split into left ideals.
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Result

In a basis adapted to the ideal decomposition, each column
contains two 4-spinors associated to different flavors.
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Result

The Lie group SU(3)c permutes the columns according to the
representations 1c, 3c, 1c, and 3c.
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Result

Each ideal is indexed with an electric charge which is multiple
of 1

3 partially representing the charge of the upper particle,
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Result

and its color is determined by the ideal to which belongs, having
associated a particular representation of SU(3)c.
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Result

The actions of the Dirac algebra and the Lorentz group are re-
ducible, permute the rows of each ideal, and split it naturally
into two 4-spinors, whose left chiral components are permuted
by the representations 1w and 2w of SU(2)L.
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Exterior algebra patterns in the
Standard Model



Exterior algebra patterns – Weak symmetry SU(2)L

The standard representation of SU(n) is Cn ∼= Cn.

The fundamental and the trivial representations of SU(n) are
∧k Cn.

The representations of the weak interaction group SU(2)L

Representation Particles Hypercharge∧0 C2 (νe)R (?) 0∧1 C2 (νe,e−)L −1∧2 C2 (e−)R −2

————————

(?) Does the right handed neutrino exist?
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Exterior algebra patterns – Color symmetry SU(3)c

Combined internal charge and color spaces:

Representation Particles Electric charge∧0 C3 νe 0∧1 C3 d r ,dy ,db − 1
3∧2 C3 ur

,uy
,ub − 2

3∧3 C3 e− −1
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Representations of complex Clifford algebras, dim 2r i

The classification of complex Clifford algebras says C`2r
∼= C(2r ).

To see this, consider the orthonormal basis (e1, . . . ,er ,er+1, . . . ,e2r ),
where e2

j = 1.

Then, we can build the basis{
aj := 1

2 (ej + ier+j)

a†j := 1
2 (ej − ier+j)

(1)

Then, {
{aj ,ak} = {a†j ,a

†
k} = 0

{aj ,a
†
k} = δjk .

(2)

This is a Witt basis.
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Representations of complex Clifford algebras, dim 2r ii

The Witt decomposition of the vector space V is V := W ⊕W †,
where W is spanned by (aj), and W is spanned by (a†j ).

Let a ∈
∧ rW , a := a1 ∧ . . . ∧ ar = a1 . . .ar . Then, a is nilpotent

(a2 = 0), so
∧ •W †a is a left ideal.

On the space
∧ •W †a, a† and a act like creation and annihila-

tion operators. Let φ ∈
∧ •W †. Then,{

a†j φa = a†j ∧ φa

ajφa = iajφa.
(3)

Since dim W † = 2r , this is our irreducible representation of C`2r .
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Representations of complex Clifford algebras, dim 2r iii

Algebraic spinors of C`2r

Since on W the inner product vanishes, the Clifford product on
the subalgebra generated by W coincides with the exterior prod-
uct. The same holds for W †.

The algebra C`2r is spanned by elements of the form

a†j1 . . .a
†
jp

aa†ak1 . . .akq , (4)

p,q ∈ {0, . . . , r}, 1 ≤ j1 < . . . < jp ≤ r , 1 ≤ k1 < . . . < kq ≤ r .

Since the elements of the form a†j1 . . .a
†
jp

span
∧ •W †, C`2r is the

direct sum of the minimal left ideals of the form∧
•W †aa†ak1 . . .akq . (5)

On these ideals, C`2r is represented just like on
∧ •W †a (3).
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Representations of complex Clifford algebras, dim 2r iv

From exterior algebra to Clifford algebra C`2r

Conversely, we can start with Cr endowed with a Hermitian inner
product h. Then, there is an isomorhism Cr ∼= C∗r , due to h.

Let u, v ∈
∧ •Cr . On

∧ •(Cr ⊕ Cr ) ∼=
∧ •Cr ⊗C

∧ •Cr , define an
associative product by uv := u∧v , u†v† := u†∧v†, uv† = u∧v†+
1
2 v†(u), u†v = u† ∧ v + 1

2 u†(v).

Then, if (aj) is an orthonormal basis of Cr ,{
{aj ,ak} = {a†j ,a

†
k} = 0

{aj ,a
†
k} = δjk .

(6)

One obtains a Clifford algebra C`(Cr ⊕ Cr ) ∼= C`2r .

Note that we don’t need h if we start from
∧ •(C∗r ⊕ Cr ).
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Exterior algebra patterns – Chiral spinors

Let γµ in the Dirac algebra C`4 = C`1,3 ⊗ C.

Define {
e1 = 1

2 (γ0 + γ3),e2 = 1
2 (−iγ2 + γ1)

f1 = 1
2 (γ0 − γ3), f2 = 1

2 (−iγ2 − γ1).
(7)

Then, f1f2 is nilpotent, and defines a minimal left ideal C`4f1f2.

In the basis (e1f1f2,e2f1f2, 1f1f2,e1e2f1f2) of C`4f1f2, the matrix form
of γµ is the Weyl representation.

Let Σ be spanned by (e1,e2). We see that the spinors from∧−Σf1f2 are Weyl spinors of left chirality, and those from
∧

+Σf1f2

are Weyl spinors of right chirality.
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Exterior algebra patterns – Summary

1. Exterior algebras are the representations of the gauge
groups in the Standard Model. The leptons and quarks in a
generation correspond to these representations.

2. The classification of leptons and quarks and their
antiparticles given by

∧ •C3 and
∧ •C3 suggests C`3+3.

3. The weak force acts on the odd part
∧1 C2 =

∧−C2 of
∧

C2.
This suggests C`2+2. But since the same particles belong to
representations of SU(3)c, this suggests that C`2+2 is a
subalgebra of the C`3+3 algebra above. The odd Dirac
spinors are the left handed spinors. The weak force acts on
left handed spinors. These suggest that the relation
between chirality and the weak force is due to the inclusion
of both the Dirac algebra and C`2+2 in the same algebra,
which is C`3+3.
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SMA – Definition and main
properties



SMA – Definition and main properties i

Let us define χ := χem ⊗ χc. The space χ has complex dimension
three and has the Hermitian inner product h = hem ⊗ hc.

Orthonormal basis: {
(q1, q2, q3)

(q†1, q
†
2, q
†
3).

(8)

The combined internal charge and color spaces for fermions
and leptons are represented now in this table:
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SMA – Definition and main properties ii

On the space χ† ⊕ χ we define the inner product

〈u†1 + u2,u
†
3 + u4〉 :=

1
2

(
u†1(u4) + u†3(u2)

)
∈ C, (9)

where u†1,u
†
3 ∈ χ

† and u2,u4 ∈ χ (also see Gualtieri 2004).

We call Standard Model Algebra (SMA) the Clifford algebra de-
fined by the inner product (9),

ASM := C`(χ† ⊕ χ) ∼= C`6, (10)

together with the Witt decomposition χ†⊕χ of the base complex
6-dimensional space, and with the Hermitian inner product on χ
and χ†.

19



SMA – Definition and main properties iii

The elements of the bases defined in equation (8) satisfy the an-
ticommutation relations

{qj , qk} = 0,
{q†j , q†k} = 0,
{qj , q

†
k} = δjk

(11)

for j, k ∈ {1, 2, 3}.
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SMA – Definition and main properties iv

We define an orthonormal basis of the vector space χ† ⊕ χ,
(e1, e2, e3, ẽ1, ẽ2, ẽ3), by {

ej = qj + q†j

ẽj = i
(
q†j − qj

)
,

(12)

where j ∈ {1, 2, 3}.

Then, e2
j = 1, ẽ2

j = 1, e†j = ej , and ẽ†j = ẽj . Also,{
qj = 1

2

(
ej + i ẽj

)
q†j = 1

2

(
ej − i ẽj

)
.

(13)
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Ideals and representation



SMA – Ideals

The elements {
q := q1q2q3,

q† = q†3q
†
2q
†
1,

(14)

are nilpotent (q2 = 0 and q†2 = 0).

We make the notation p := qq† and p′ = q†q.

Then,

p =
1 + ie1ẽ1

2
· 1 + ie2ẽ2

2
· 1 + ie3ẽ3

2
. (15)

The elements p and p′ are idempotent, (p)2 = p and (p′)2 = p′.
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SMA – Ideals

They are in fact primitive idempotent elements, hence they de-
fine minimal left and right ideals of the algebra ASM (Chevalley
1997; Crumeyrolle 1990). When we represent the Clifford algebra
ASM as an endomorphism algebra EndC(C8), the idempotents p

and p′ are represented as projectors.

The ideals ASMq
† = ASMp and ASMq = ASMp

′ are minimal left
ideals, and the ideals qASM = (ASMq

†)† and q†ASM = (ASMq)†

are minimal right ideals. It is easy to show that
∧ •χq = 0 and∧ •χ†q† = 0, and therefore ASMq

† =
∧ •χq† =

∧ •χ†p and ASMq =∧ •χ†q =
∧ •χp′. Similar relations hold for the minimal right ideals,

q
∧ •χ = 0, q†

∧ •χ† = 0, qASM = q
∧ •χ† = p

∧ •χ, and q†ASM =

q†
∧ •χ = p′

∧ •χ†.
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Representation of ASM on its ideal
∧ •χ†p

The Clifford product between u† + v ∈ χ† ⊕ χ and ωp ∈
∧ •χ†p is

(u† + v)ωp = (u† ∧ ω)p + (ivω)p ∈
∧
•χ†p, (16)

where the interior product ivω is defined for any ω ∈
∧ kχ† by

(ivω) (u1, . . . ,uk ) =

{
ω(v ,u1, . . . ,uk−1), for k ∈ {1, 2, 3}, and

0 for k = 0.
(17)

Then, qj and q†j act as ladder operators on
∧ •χ†p:{

q†j(ωp) = (q†j ∧ ω)p,

qj(ωp) = (iqjω)p,
(18)

which is consistent with the anticommutation relations (11).

Similarly to equation (16) one defines an irreducible represen-
tation on the minimal left ideal

∧ •χp′ of ASM. Its elements are
C`6-spinors.
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Representation of ASM on its ideal
∧ •χ†p

A basis of the ideal
∧ •χ†p is

(1 p, q†23 p, q†31 p, q†12 p, q†321 p, q†1 p, q†2 p, q†3 p). (19)

The basis (19) is written in terms of the idempotent element p. It
is equal to the basis

(q q†,−q1 q†,−q2 q†,−q3 q†, 1 q†, q23 q†, q31 q†, q12 q†) (20)

written in terms of the nilpotent q†, which determines the same
ideal as p.
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Matrix representation of ASM on its ideal
∧ •χ†p

Let us find the matrix representation of qj , q†j , ej , and ẽj in the basis
(19).

Here and in other places it will be convenient to use the Pauli

matrices σ1 =

 0 1
1 0

, σ2 =

 0 −i
i 0

, σ3 =

 1 0
0 −1

, and

the matrices σ+ = 1
2 (σ1 + iσ2) =

 0 1
0 0

, σ− = 1
2 (σ1 − iσ2) =

 0 0
1 0

, σ+
3 = 1

2 (1+σ3) =

 1 0
0 0

 = σ+σ−, and σ−3 = 1
2 (1−σ3) =

 0 0
0 1

 = σ−σ+.
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Matrix representation of ASM on its ideal
∧ •χ†p

We obtain, in the representation (19) of ASM on its ideal
∧ •χ†q,

q†1 =



0 0 0 0
0 0 0 −iσ2

−iσ2 0 0 0
0 0 0 0


, q1 =



0 0 iσ2 0
0 0 0 0
0 0 0 0
0 iσ2 0 0


, (21)

q†2 =



0 0 0 σ−3
0 0 −σ−3 0
0 −σ+

3 0 0
σ+

3 0 0 0


, q2 =



0 0 0 σ+
3

0 0 −σ+
3 0

0 −σ−3 0 0
σ−3 0 0 0


,

(22)
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Matrix representation of ASM on its ideal
∧ •χ†p

q†3 =



0 0 0 −σ−
0 0 σ+ 0
0 −σ+ 0 0
σ− 0 0 0


, q3 =



0 0 0 σ+
0 0 −σ− 0
0 σ− 0 0
−σ+ 0 0 0


.

(23)

Then,

q† =



0 0 0 0
0 0 0 0
σ+

3 0 0 0
0 0 0 0


, q =



0 0 σ+
3 0

0 0 0 0
0 0 0 0
0 0 0 0


, (24)

p =



σ+
3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, p′ =



0 0 0 0
0 0 0 0
0 0 σ+

3 0
0 0 0 0


. (25)
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Matrix representation of ASM on its ideal
∧ •χ†p

Then, from equation (12),

e1 =



0 0 iσ2 0
0 0 0 −iσ2

−iσ2 0 0 0
0 iσ2 0 0


, ẽ1 =



0 0 σ2 0
0 0 0 σ2

σ2 0 0 0
0 σ2 0 0


, (26)

e2 =



0 0 0 12

0 0 −12 0
0 −12 0 0
12 0 0 0


, ẽ2 =



0 0 0 −iσ3

0 0 iσ3 0
0 −iσ3 0 0

iσ3 0 0 0


, (27)

e3 =



0 0 0 iσ2

0 0 iσ2 0
0 −iσ2 0 0
−iσ2 0 0 0


, ẽ3 =



0 0 0 −iσ1

0 0 iσ1 0
0 −iσ1 0 0

iσ1 0 0 0


.
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Matrix representation of ASM on its ideal
∧ •χ†p

We define the elements {
e := e1e2e3,

ẽ = ẽ1ẽ2ẽ3.
(29)

Then, e2 = −1, ẽ2 = −1, eẽ = −ẽe, and (eẽ)2 = −1.

The matrix representations of the elements e, ẽ, and eẽ is

e =

 04 14

−14 04

, ẽ = i
 04 14

14 04

, eẽ = i
 14 04

04 −14

. (30)
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The ideal decomposition of ASM

It is helpful sometimes to use multiindices K ⊂ {1, 2, 3}. This allows
us to write immediately a matrix representation of the algebra
ASM. We can represent the spinors from

∧ •χ†q as vectors

Ψq =
∑

K⊂{1,2,3}

ΨKq†Kq, (31)

where ΨK ∈ C. Similarly, their duals can be expressed in the
following vector form

q†Ψ† =
∑

K⊂{1,2,3}

Ψ†Kq
†qK , (32)

where Ψ†K ∈ C.

Any element a of ASM can be written uniquely as a linear com-
bination of the form

a =
∑

K1,K2⊂{1,2,3}

aK1
K2

q†K1 p qK2
. (33)
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The ideal decomposition of ASM

Therefore, the Witt decomposition A1
SM = χ† ⊕ χ gives a natural

decomposition of ASM as a direct sum of left ideals

ASM =
3⊕

k=0

(∧
•χ†
)
p
∧

kχ, (34)

which means that ASM decomposes as sum of spinors with inter-
nal degrees of freedom in

∧ kχ, similar to leptons and quarks.
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The Dirac algebra

The representation of the Dirac algebra on a minimal left ideal
is decomposed by the projectors 1

2 (1± ieẽ) into two irreducible
representations.

In addition, each of the resulting four-dimensional subspaces has
to be split into complex two-dimensional spaces corresponding
to chirality. So we need the representation of the chirality oper-
ator, which we take to be

Γ5 := −ie1ẽ1 =



12 0 0 0
0 −12 0 0
0 0 −12 0
0 0 0 12


. (35)
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The Dirac algebra

Let us recall the chiral (Weyl) representation,

γ0 =

 0 12

12 0

, γ j =

 0 σj

−σj 0

, γ5 =

 −12 0
0 12

 (36)

and define a modified version of it, γ̃0 = γ0, γ̃ j = −γ j , γ̃5 = −γ5.

Then the Dirac representation on the eight-dimensional space
ASMp is the direct sum of the two chiral representations,

Γµ =

 γ̃µ 0
0 γµ

. (37)

This choice will turn out to be convenient when talking about
the weak interaction.
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Standard Model Algebra



Weak symmetry in the Standard Model Algebra

Now we look for the representations of SU(2)L, taking into ac-
count the chirality of each space. Consider the elements

ωu =



0 12 0 0
0 0 0 0
0 0 0 −12

0 0 0 0


, ωd =



0 0 −12 0
0 0 0 −12

0 0 0 0
0 0 0 0


, (38)

ω◦ =



σ+ 0 0 0
0 −σ+ 0 0
0 0 −σ+ 0
0 0 0 σ+


. (39)
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Weak symmetry in the Standard Model Algebra

We define the null complex vector spaces N and N † as the
spaces spanned by null vectors from (41), by{

N := spanC (ωu, ωd, ω◦) ,

N † := spanC
(
ω†u, ω

†
d, ω
†
◦
)
.

(40)

The elements
(ωu, ωd, ω◦, ω

†
u, ω
†
d, ω
†
◦) (41)

form a Witt basis of the space N † ⊕N , satisfying the anticom-
mutation relations

{ωj , ωk} = 0,
{ω†j , ω†k} = 0,
{ωj , ω

†
k} = δjk

(42)

for j, k ∈ {u, d, ◦}.
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Weak symmetry in the Standard Model Algebra

We define the orthonormal basis{
uj = ωj + ω†j

u′j = i
(
ω†j − ωj

)
,

(43)

where j ∈ {u, d, ◦}.

Then, u2
j = 1, u′2j = 1, andωj = 1

2

(
uj + iu′j

)
ω†j = 1

2

(
uj − iu′j

)
.

(44)
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Weak symmetry in the Standard Model Algebra

The matrix form of uj and u′j is

uu =



0 12 0 0
12 0 0 0
0 0 0 −12

0 0 −12 0


, u′u =



0 −i12 0 0
i12 0 0 0
0 0 0 i12

0 0 −i12 0


, (45)

ud =



0 0 −12 0
0 0 0 −12

−12 0 0 0
0 −12 0 0


, u′d =



0 0 i12 0
0 0 0 i12

−i12 0 0 0
0 −i12 0 0


,

(46)

u◦ =



σ1 0 0 0
0 −σ1 0 0
0 0 −σ1 0
0 0 0 σ1


, u′◦ =



σ2 0 0 0
0 −σ2 0 0
0 0 −σ2 0
0 0 0 σ2


. (47)
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Weak symmetry in the Standard Model Algebra

None of the elements uj , u
′
j , ω
†
j , ωj are linear combinations of the

elements (q†1, q
†
2, q
†
3, q1, q2, q3). Then,

N †,N 6= χ†, χ.

The elements {
ω := ωuωdω◦,

ω† = ω†◦ω
†
dω
†
u

(48)

are nilpotent, ω2 = 0 and ω†2 = 0.

The nilpotents ω and ω† have the following matrix form

ω =



0 0 0 −σ+
0 0 0 0
0 0 0 0
0 0 0 0


, ω† =



0 0 0 0
0 0 0 0
0 0 0 0
−σ− 0 0 0


. (49)
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Weak symmetry in the Standard Model Algebra

From them we can construct the idempotents ω†ω and ωω†,

ωω† = p =



σ+
3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, ω†ω =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 σ−3


. (50)

Then,
ASMp =

∧
•N †p. (51)

The vectors ωj and ω†j act as ladder operators on this ideal, similar
to (18): {

ω†j(ap) = (ω†j ∧ a)p,

ωj(ap) = (iωj a)p,
(52)

where a ∈
∧ •N †, and iωj is the interior product defined by the

Hermitian inner product hN . This definition is consistent with the
anticommutation relations (42).
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Weak symmetry in the Standard Model Algebra

From the relations (52) it follows that the matrix form (38) corre-
sponds to the basis(

1 p, ω†◦ p, ω
†
u p, ω

†
uω
†
◦ p, ω

†
d p, ω

†
dω
†
◦ p, ω

†
dω
†
u p, ω

†
dω
†
uω
†
◦ p
)
. (53)

At the same time, the matrices (38) are expressed in the basis
(19). Hence, 

ω†◦ p = q†23 p

ω†u p = q†31 p

ω†uω
†
◦ p = q†12 p

ω†d p = q†321 p

ω†dω
†
◦ p = q†1 p

ω†dω
†
u p = q†2 p

ω†dω
†
uω
†
◦ p = q†3 p

(54)

Although the identities (54) are between elements of the same
ideal

∧ •N †p =
∧ •χ†p, the spaces

∧ •N † and
∧ •χ† are differ-

ent. 41
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generators



The weak symmetry – Spinorial generators

Let W0R := spanC
(
p, ω†◦p

)
be the vector subspace of the ideal

ASMp spanned by the null vectors p and ω†◦p. In the following,
it will correspond to the up particle singlet space of the weak
symmetry. The elements of the basis (53) split the ideal ASMp into
subspaces which correspond to the singlets and doublets of the
weak symmetry:

Right-handed up singlet space: W0R := 1 spanC
(
p, ω†◦p

)
,

Left-handed up doublet space: W0L := ω†uW0R,

Right-handed down singlet space: W1R := ω†uω
†
dW0R,

Left-handed down doublet space: W1L := ω†dW0R.

(55)

The Clifford algebra ASM contains a spin representation of the
weak group SU(2)L, which is a double cover of the representa-
tion normally used.
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The weak symmetry – Spinorial generators

We choose the following set of generator bivectors for the group
SU(2)L: 

T̃1 := uuu
′
d − u′uud

T̃2 := uuud + u′uu
′
d

T̃3 := uuu
′
u − udu

′
d

(56)

They have the following matrix form in the basis (53):

T̃1 = 2i



0 0 0 0
0 0 12 0
0 12 0 0
0 0 0 0


, T̃2 = 2



0 0 0 0
0 0 −12 0
0 12 0 0
0 0 0 0


, (57)

T̃3 = 2i



0 0 0 0
0 −12 0 0
0 0 12 0
0 0 0 0


. (58)
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The weak symmetry – Spinorial generators

The proof that the bivectors in equation (56) are spinorial gener-
ators of the SU(2)L group is given in (Stoica 2018),

where in addition it is shown that sin2 θW = 0.25, which seems
more encouraging that that of 0.375 predicted by the SU(5),
Spin(10), and other GUTs.

Depending on the utilized scheme, the experimental values for
sin2 θW , range between ∼ 0.223 and ∼ 0.24 (Erler and Freitas
2015; Mohr and Newe 2016).
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The electrocolor symmetry

A set of generator bivectors for the group SU(3)c can be chosen
to correspond to the Gell-Mann matrices,

λ̃1 = e1ẽ2 − ẽ1e2, λ̃2 = e1e2 + ẽ1ẽ2, λ̃3 = e1ẽ1 − e2ẽ2,

λ̃4 = e1ẽ3 − ẽ1e3, λ̃5 = e1e3 + ẽ1ẽ3,

λ̃6 = e2ẽ3 − ẽ2e3, λ̃7 = e2e3 + ẽ2ẽ3, λ̃8 = 1√
3

(e1ẽ1 + e2ẽ2 − 2e3ẽ3).

(59)

The generator of U(1)em is the identity of EndC (χ),

Q = e1ẽ1 + e2ẽ2 + e3ẽ3. (60)

It is immediate to see that λ̃†j = −λ̃j for all values of j.
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The electrocolor symmetry

The standard Gell-Mann matrices are defined by λj = iλ̃j . Then,

e−iϕλj a = e
ϕ
2 λ̃jae−

ϕ
2 λ̃j , (61)

for the SU(3)c representation 3.

Since the action of an element g ∈ Spin(χ† ⊕ χ) on an element
ω ∈ ASM is given by ω 7→ gωg−1, the action of SU(3)c and U(1)em
on χ extends to the exterior algebra

∧ •χ, in a way compatible
with the exterior product. Hence, these spinorial generators give
the right representations for the color and electric charge.

The symmetry generated by (60) transforms not only p
∧ kχ, but

also ω†dp. From ω†dp = q†p it follows that the electric charge of
q†p is −1. This accounts for the fact that each minimal left ideal
contains two different particles, with different electric charges.
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Leptons and quarks

From

ASM =
3⊕

k=0

ASMp
∧

kχ. (62)

and
ASMp = W0 ⊕W1 = W0R ⊕W0L ⊕W1L ⊕W1R. (63)

it follows that

ASM =
3⊕

k=0

(W0 ⊕W1)
∧

kχ, (64)

and in terms of the chiral spaces,

ASM =
3⊕

k=0

(W0R ⊕W0L ⊕W1L ⊕W1R)
∧

kχ. (65)
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Leptons and quarks

We centralize all these remarks, and use as classifiers the ele-
ments of the form pqK and q†pqK .

Then, the data in this table
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Leptons and quarks

can be classified as in the following table:
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Leptons and quarks

and have the matrix form
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All symmetries



All symmetries

Any element of the ASM is a linear combination of elements of
the form

ω†◦
a ω†u

b q†c p qK , (66)

where K ⊂ {1, 2, 3} is a multiindex, a,b,c ∈ {0, 1}, and by con-
vention,

(
ω†u
)0

=
(
ω†◦
)0

=
(
q†
)0

= 1.
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All symmetries

Ranges of various actions on the Standard Model Algebra:

We see the overlap between improper Lorentz transformations
and the weak symmetry group.
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Thank you!
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other models



Relations with other models

The SMA model shares common features with previously known
models. Particles of two distinct flavors were previously com-
bined into 8-spinor ideals, in a unified spin gauge theory of grav-
ity and electroweak interactions based on C`1,6

∼= C`1,3 ⊗ C`0,3

(Chisholm and Farwell 1996), and in (Trayling 1999; Trayling and
Baylis 2001; Trayling and Baylis 2004) based on C`7

∼= C`3 ⊗C`4,
where there are three space dimensions, the time is a scalar, the
four extra dimensions related to the Higgs boson, the predicted
Weinberg angle is given by sin2 θW = 0.375, and remarkably, the
full symmetries of the SM arise from the condition to preserve the
current and to leave right-handed neutrino sterile.
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Relations with other models

Among the main differences, the SMA model uses different struc-
tures, leading to the algebra C`(χ† ⊕ χ) ∼= C`6, includes the
Dirac algebra C`1,3 ⊗ C, and sin2 θW = 0.25. In the C`1,6 and C`7

models the ideals are obtained using primitive idempotents. The
SMA model uses a decomposition into left ideals C`6qq

†qK , where
K ⊆ {1, 2, 3} (notations from §3), based on the Witt decomposi-
tion χ† ⊕ χ and the exterior algebra

∧ kχ contained within the
minimal right ideal qq†C`6 = qq†

∧ kχ. This allows the colors and
charges to be emphasized, and the minimal left ideals of the
same charge and different colors to be coupled into a larger
ideal.
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Relations with other models

I arrived at the symmetries SU(3)c and U(1)em and the genera-
tors (59) and (60) starting from the standard ideal decomposi-
tion of Clifford algebras C`2r (Chevalley 1997; Crumeyrolle 1990),
the representation of U(N) and SU(N) on C`2N as the subgroup
of Spin(2N) preserving a Hermitian inner product, given in (Do-
ran et al. 1993), and by the standard construction of the Hermi-
tian exterior algebra (ROWells2007ComplexManifolds), resulting
in the correct 1c,3c,1c, ad 3c representations. A proof that the
unitary spin transformations preserving a Witt decomposition in
C`6 give the SU(3)c and U(1)em symmetries, along with a set of
generators constructed from the qj and q†j ladder operators but
equivalent to (59), was given in (Furey 2015). Based on the alge-
bra C`7, in (Trayling and Baylis 2004) were proposed generators
of SU(3)c which are equivalent to (59) due to the isomorphisms
C`7

∼= MC(8) ∼= C`6.
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Relations with other models

In a model based on octonions, Furey (Furey 2015; Furey 2016)
uses the Witt decomposition for C`6 to represent colors and charges
of up- and down-type particles by q†Kqq

† and qKq
†q, on the min-

imal left ideals C`6qq
† and C`6q

†q. They are united into a single
irreducible representation of C`6 ⊗C C`2 obtained by using the
octonion algebra. To represent the complete particles, with spin
and chirality, Furey proposes including the quaternion algebra,
resulting in a representation of leptons and quarks as spinors of
an algebra isomorphic to C`12. By contrast, in the SMA model,
everything is contained in the ideals of C`6 classified by the el-
ements qq†qK . Despite these differences, the SU(3)c and U(1)em
symmetries in the SMA are identical to those obtained previously
by Furey (Furey 2016) as the unitary spin transformations preserv-
ing the Witt decomposition of C`6, improving by this previous re-
sults based on octonions and Clifford algebras (Günaydin and
Gürsey 1974; Barducci et al. 1977; Casalbuoni and Gatto 1979).
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The Weinberg Angle i

In the following I discuss the electroweak symmetry breaking
from geometric point of view. I will review first the geometry of
the standard electroweak symmetry breaking in a way similar to
(Derdzinski 1992, Ch. 6).

Then, I will calculate the Weinberg angle as seems to be pre-
dicted by the Standard Model Algebra.

The exchange bosons of the electroweak force are connections
in the gauge bundle having as fiber the two-dimensional Hermi-
tian vector space (Ww ,hw), where Ww := spanC

(
ω†u, ω

†
d

)
.

Consequently, the internal components of the exchange bosons
of the electroweak force are elements of the unitary Lie algebra
u(2)ew ∼= u (Ww ), that is, Hermitian forms.
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The Weinberg Angle ii

The unitary Lie algebra u(2)ew, regarded as a vector space, has
four real dimensions. After the symmetry breaking, they corre-
spond to the photon γ, and the weak force bosons W± and Z0.

Following (Derdzinski 1992), the decomposition of the Lie alge-
bra u(2)ew into subspaces where each of these bosons live is

u (Ww ) = γ (Ww )⊕W (Ww )⊕ Z (Ww ) . (67)

Hence, γ ∈ γ (Ww ), W± ∈W (Ww ), and Z0 ∈ Z (Ww ).

The decomposition (67) is not unique, but is uniquely determined
by the Higgs field φ and the Weinberg electroweak mixing angle
θW .
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The Weinberg Angle iii

In fact, what we need is a special complex line in the space Ww ,
which is determined by φ, and an Ad-invariant inner product on
u (Ww ).

The requirement that the inner product is invariant results in the
following form:

〈a,b〉u(Ww ) = −2r2g′2 Trace(ab) + r2(g′2 − g2) Trace a Trace b, (68)

where a,b ∈ u (Ww ), g,g′ are constants – the coupling con-
stants of the electroweak model, and r2 > 0 is a constant.

The Weinberg angle θW is given by

sin2 θW =
g′2

g2 + g′2
, (69)
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The Weinberg Angle iv

The electric charge e is

e = g sin θW = g′ cos θW =
1
2

√
g2 + g′2 sin 2θW . (70)

The standard electroweak model does not provide a preference
for this angle, which is determined indirectly from experiments.

The grand unified theories, and the present proposal, predict
definite values for the Weinberg angle.

The Higgs field is a scalar with respect to spacetime symmetries,
but internally it is a vector φ ∈ Ww . The direction of the vector φ
in Ww is the element ω†u = φ√

hw(φ,φ)
.
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The Weinberg Angle v

The Higgs field has two main roles: on the one hand is responsible
for the symmetry breaking, by selecting a particular direction in
the space Ww .

On the other hand, it is responsible for the masses of at least
some of the elementary particles.

The Higgs field is a section of the electroweak bundle, which
splits the electroweak bundle for a pair of weakly interacting
leptons into two one-dimensional complex bundles – the bun-
dle spanned by the Higgs field, and the bundle orthogonal to
that.

But in the proposed approach, this split is ensured by the opera-
tor −ieẽ.
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The Weinberg Angle vi

Recall that the representation of the Dirac algebra on one of the
minimal left ideals of ASM is reducible, being eight-dimensional.

The operator−ieẽ splits each ideal into two four-dimensional space
by determining two projectors, 1

2 (1∓ ieẽ).

Therefore, it also determines the particular direction ω†u, and by
this, the Higgs field φ up to a constant factor.

Hence, in the Standard Model Algebra, the symmetry breaking
does not require the Higgs field, although it is still needed to gen-
erate the masses of the particles.

Let us now calculate the prediction of the Weinberg angle θW ,
first in general, considering an extension of u(2) to su(N), 2 < N ∈
N. I will follow a simple generalization of the usual geometric
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The Weinberg Angle vii

proof, used for example in (Derdzinski 1992, Ch. 7) for the SU(5)

GUT.

Because su(N) is simple, there is a unique Ad-invariant inner prod-
uct, up to a constant r ,

〈A,B〉SU(N) = −NrN Trace(AB), (71)

where A,B ∈ su(N), rN > 0. The embedding of u(2) in su(N)

should be traceless, because Trace(A) = 0 for any A ∈ su(N).

It follows that the embedding is given, in a basis extending the
basis of Ww to CN . by

a 7→ a ⊕
(
− 1

N − 2
Trace aIW⊥

w

)
(72)

for any a ∈ u(2).
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The Weinberg Angle viii

Then,

〈a,b〉u(2) =

= 〈a ⊕
(
− 1

N−2 Trace aIW⊥
w

)
,b ⊕

(
− 1

N−2 Trace bIW⊥
w

)
〉SU(N)

= −NrN Trace(ab)− NrN
(
− 1

N−2

)2
Trace a Trace b Trace IW⊥

w

= −NrN Trace(ab)− NrN 1
N−2 Trace a Trace b.

(73)

By comparing with (68) it follows that 2r2g′2 = rNN and r2(g′2 −
g2) = −NrN 1

N−2 .

This solves to g′2 = N
2

rN
r2

and g2 = g′2 + N
N−2

rN
r2

.

Then, the Weinberg angle predicted by a GUT based on the
extension of u(2) to su(N) is

sin2 θW ,N =
N
2

N + N
N−2

=
N
2

N(N−1)
N−2

=
1
2

N − 2
N − 1

. (74)
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The Weinberg Angle ix

Then, for the SU(5) GUT model one gets sin2 θW ,5 = 3
8 = 0.375.

For the Standard Model Algebra, recall that u (Ww ) is embed-
ded in su(3), which is the symmetry group of (N †,hN ).

Then,

sin2 θW ,ASM
= sin2 θW ,3 =

1
4

= 0.25, (75)

corresponding to θW ,ASM
= π

6 .

The prediction of ASM, sin2 θW = 0.25, seems more encouraging
that that of 0.375 predicted by the SU(5), Spin(10), and other
GUTs.

But its derivation from the embedding of U(2)ew into an SU(3)

symmetry acting on the left of the algebra ASM seems to imply
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The Weinberg Angle x

an unexpected connection between the electroweak symme-
try and spacetime, which requires further investigations.

Moreover, it is still not within the range estimated experimentally.

Depending on the utilized scheme, the experimental values for
sin2 θW , range between ∼ 0.223 and ∼ 0.24 (Erler and Freitas
2015).

In particular, CODATA gives a value of 0.23129(5) (Mohr and
Newe 2016). As in the case of the SU(5) prediction of sin2 θW ,5 =

0.375, a correct comparison would require taking into account
the running of the coupling constants due to higher order per-
turbative corrections.
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Thank you!
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