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Introduction 1

Quantum entanglement

» Most surprising feature of quantum mechanics,
No analog in classical mechanics

» From pure state of the full system S: p = |¢) (4|, reduced
density matrix of a subsystem A: pa = Trs_4 p can become
mixed states, and has nonzero entanglement entropy

Sa=—Tralpalnpa].

This is purely a quantum property.
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[Hastings 2007]
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Introduction 2

Area law of entanglement entropy

>

Ground states of quantum many-body systems with local
interactions typically exhibit the area law behavior of the
entanglement entropy: S, o< (area of A)

Gapped systems in 1D are proven to obey the area law.
[Hastings 2007] (Area law violation) = Gapless

For gapless case, (1 + 1)-dimensional CFT violates
logarithmically: 5S4 = £ In(volume of A).  [Calabrese, Cardy 2009]
Belief for gapless case in D-dim. (over two decades) :

Sa = O(LP=YInL) (L: length scale of A)

Recently, 1D solvable spin chain models which exhibit
significant area-law violation have been discovered.

» Beyond logarithmic violation: S5 o< /(volume of A)
[Movassagh, Shor 2014], [Salberger, Korepin 2016]

Counterexamples of the belief!
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» 1D spin chain at sites i € {1,2,--- ,2n}
» Spin-1 state at each site can be regarded as up, down and flat

steps;
|U><:>/‘, ‘d><:>\"7 |O><:>—)

» Each spin configuration < length-2n walk in (x, y) plane
Example)

y
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MOtZkin Spln mOdel 2 [Bravyi et al 2012]
Hamiltonian: Hpotzkin = Hpuik + Hbdya Hbdy = |d>1<d| + |u>2n<u|
» Bulk part: Hpyix = Efg;l |_|J'J'+1,

Njj1 = ’D>j,j+1<D| + |U>j,j+1<U| + |F>j,j+1<F|

(local interactions) with

|D>57(|o dy — |d. 0)),
R e

|U>z}<ro u) — |u, 0)), -

£y — 1 & —- /'\

F) = 5(10.0) ~ |u. ).

“gauge equivalence”.
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Hamiltonian: Hpyotzkin = Hpuik + Hbdy
J

> Hpjotzkin is the sum of projection operators.
= Positive semi-definite spectrum
» We find the unique zero-energy ground state.
» Each projector in Hpotzkin annihilates the zero-energy state.
= Frustration free
» The ground state corresponds to randoms walks starting at
(0,0) and ending at (2n,0) restricted to the region y > 0
(Motzkin Walks (MWs)).



MOtZkin Spln mOdel 4 [Bravyi et al 2012]

Example) 2n =4 case,
MWs:

I NIRRTV NN ¥
TN TN TN NN

N

(i
Ground state:

1
Py = NG [/0000) + |ud00) + |0ud0) + |00ud)

+|u0d0) + [0u0d) + |u00d) + |udud)
+|uudd)] .



MOtZkin Spln mOdel 5 [Bravyi et al 2012]

Note
Forbidden paths for the ground state

1. Path entering y < 0 region

TN AN T

Forbidden by Hpqy,
2. Path ending at nonzero height

T

Forbidden by Hyqy,



MOtZkin Spln mOdel 6 [Bravyi et al 2012]

In terms of S = 1 spin matrices

2n—1
1 1, 1. o
Hiulk = 5 Z: [1,-1,-+1 = 3 52iSej1 = 3578z + 452157
J:

+ 54 (525—)j+1 +5- (5+52)j+1 - (S—Sz)j S4j+1

(522 - 52)1 + % (522 + 52)2n

—(S.S:

~—

Hpdy =

N =
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Cx = %{1 (2:): Catalan number



MOtZkin Spln mOdel s [Bravyi et al 2012]

Entanglement entropy of the subsystem A= {1,2,---  n}:
» Normalization factor of the ground state |Py,) is given by

the number of MWs of length 2n: My, = ZZ:O Ck <§Z>

Cx = %{1 (2:): Catalan number

» Consider to trace out the density matrix p = |Pap){Pan| w.r.t.
the subsystem B = {n+1,---,2n}.
Schmidt decomposition:

|'D2n> = Z V pr(j,,r)r

h>0

P'(10ﬁh)> ® ‘ Pr(lhﬁ0)>

) _ () 1
Paths from (0,0) to (n, h)



MOtZkin Spln mOdel 8 [Bravyi et al 2012]

> M,(,h) is the number of paths in P,(,O_m).
For n — oo, Gaussian distribution
h 1 2 2
i) 2RO 1 o/,

> Reduced density matrix

h
pa=Trgp= Y pis

P’(70—>h) > < P,(,O_> h)

h>0
> Entanglement entropy
h h
Sa = — Z Pg,n In Pg,r)1
h>0
1 2 1
= +§In§+'y—§ (v: Euler constant)

up to terms vanishing as n — oo.
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Motzkin spin model 9 [Bravyi et al 2012]

Notes
» The system is critical (gapless).
Sa is similar to the (1 + 1)-dimensional CFT.

» But, gap scales as O(1/n*) with z > 2. (numerically, z ~ 3)
The system cannot be described by relativistic CFT.

> As we will see later, the Rényi entropy exhibits different
behavior from the CFT case.

» Excitations have not been much investigated.
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Color d.o.f. decorated to Motzkin Walks



Colored Motzkin Spin model 1 [Movassagh, Shor 2014]

» Introducing color d.o.f. Kk =1,2,--- s to up and down spins
as

k k
’uk>@/, ’dk><:>\, 0) &
Color d.o.f. decorated to Motzkin Walks

» Hamiltonian Hepotzkin = Hpuik + Hbdy

» Bulk part consisting of local interactions:

2n—1
Hpui = Z (M1 +057)
j=1
S
Mjj1 = DDk>j,j+1<Dk| + |Uk>j,j+1<Uk| + |Fk>j,j+1<Fk|}

k=1
with



Colored Motzkin Spin model 2 [Movassagh, Shor 2014]

0) = 75 (o @) ~[a-.0)).
5 ((0.0) [k, 0)).
F*) (\0 0) — ’u Ld9)).

! ’
neess = > |uk, d)  (uk a¥].
i Jd+1

= Colors should be matched in up and down pairs.

o
ST

and

» Boundary part

oy = 3= (), (] +[4£), 7).

k=1
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Colored Motzkin Spin model 3 [Movassagh, Shor 2014]

» Still unique ground state with zero energy
» Example) 2n = 4 case,

konk koK konk
—>—>—>—>+/\—>—>+—>/\—>+—>—>/'\
LN e
SN 4
BN
_|_

S

\/ﬁ |0000> + 2 {‘ukdk00> et ‘UkOOdk>}

+ i {)ukdkuk’dk’> + ]ukuk’dk’dk>}].

k,k'=1

|Ps) =




Colored Motzkin Spin model 4 [Movassagh, Shor 2014]

Entanglement entropy

» Paths from (0,0) to (n, h), P have h unmatched up
steps.
Let FN’,(,Oﬁh)({/im}) be paths with the colors of unmatched up
steps frozen.
(unmatched up from height (m — 1) to m) — u"m

> Similarly,

(unmatched down from height m to (m — 1)) — d".

» The numbers satisfy M — sh pSh).



Colored Motzkin Spin model 5 [Movassagh, Shor 2014]

Example
2n =8 case, h=2

y A B

3
"k
2 u"'/Z d“2
k Kk
1
Ut dr
0 X



Colored Motzkin Spin model 6 [Movassagh, Shor 2014]

» Schmidt decomposition

PO ({km}) )

with

» Reduced density matrix

DD W'

h>0 k1=1 kp=1

{rmh) ) (PO ({1}




Colored Motzkin Spin model 7 [Movassagh, Shor 2014]

» For n — oo,

h V2sh ()2
pi) ~ NEOEE (h+1)2e 2 x [L+ O(1/n)]
with o = 5. Note: Effectively h < O(y/n).
» Entanglement entropy
Sa o= =Y s"piinpl)

h>0



Colored Motzkin Spin model 7 [Movassagh, Shor 2014]

» For n — oo,

—h 2

(0 V25" 2% 1t o

Pn,n ﬁ(UI7)3 2( + ) € [ + ( /n)]
with o = 5. Note: Effectively h < O(y/n).
» Entanglement entropy
Sa o= =Y s"piinpl)
h>0

2 1 1 1

= (2Ins) %n +§Inn+§|n(27m)+fy— E—Ins

up to terms vanishing as n — oc. Grows as /n.



Colored Motzkin Spin model 8 [Movassagh, Shor 2014]

Comments

Matching color = s~ " factor in h

(
Pn,n
= crucial to O(y/n) behavior in Sp



Colored Motzkin Spin model 8 [Movassagh, Shor 2014]

Comments
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Colored Motzkin Spin model 8 [Movassagh, Shor 2014]

Comments

Matching color = s~ factor in pf,h,z

= crucial to O(y/n) behavior in Sp
» For spin 1/2 chain (only up and down), the model in which
similar behavior exhibits in colored as well as uncolored cases
has been constructed. (Fredkin model)  [Salberger, Korepin 2016]

» Deformation of models to achieve the volume law behavior
(SA 0.8 n)
Weighted I\/Iotzkin/Dyck walks [Zhang et al, Salberger et al 2016]
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» Rényi entropy has further importance than the von Neumann
entanglement entropy:

1
SAa = 1—a InTr4p%  witha >0and a # 1.
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» Generalization of the von Neumann entanglement entropy:
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Rényi entropy [Rényi, 1970]

>

Rényi entropy has further importance than the von Neumann
entanglement entropy:

1
SA 0= 1 InTr 4 p3 with @ > 0 and a # 1.

Generalization of the von Neumann entanglement entropy:
lima—154.0 = Sa

Reconstructs the whole spectrum of the entanglement
Hamiltonian Hepg 4o = — Inpa.

For Sa o (0 < a < 1), the gapped systems in 1D is proven to

obey the area law. [Huang, 2015]
For (L+1)D CFT, Sa o = £ (1 + 1) In(volume of A)

Here, we analytically compute the Rényi entropy of half-chain in
the Motzkin model.

New phase transition found at oo = 1!
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Réyni entropy of Motzkin model 1 [F.S., Korepin, 2018]

» What we compute is the asymptotic behavior of
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» What we compute is the asymptotic behavior of

1 ’ «
Saa = 1o InZsh (pnf',,) .

h=0

» For colorless case (s = 1), we obtain

1 1 1
Spaa = 2Inn—|—1_alnr<a+2>
1 T
= Ja+20)1 In -~ 41 6}
2(1—a){( F2a)na+alnz +n

up to terms vanishing as n — oo.



Réyni entropy of Motzkin model 1 [F.S., Korepin, 2018]

» What we compute is the asymptotic behavior of

1 ’ «
Saa = 1o InZsh (p,(7h,,) .

h=0

» For colorless case (s = 1), we obtain

1 1
InT -
I—a <a+2>
1

T
—— (14 2a)l In — + 1 6}
2(1—a){( + 2a) na+aln 7 +In

1
Saa = Elnn—l—

)

up to terms vanishing as n — oo.
» Logarithmic growth, but different from the CFT case
» Reduces to S4 in the oo — 1 limit.
» Consistent with half-chain case in the result in [Movassagh, 2017]
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Colored case (s > 1)

h o
;

» The summand s” (p .n> has a factor s(1—a)h

For 0 < a < 1, exponentially growing (colored case (s > 1)).
= Saddle point value of the sum: h, = O(n)
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Colored case (s > 1)

(h)\°

» The summand s” (pn_n> \ has a factor s(1—)h

For 0 < a < 1, exponentially growing (colored case (s > 1)).
= Saddle point value of the sum: h, = O(n)

» Saddle point analysis for the sum leads to

2 o o
Saa=n @ In [o’(slza -|—5_127 +5—1/2>}
’ 11—«

1+ a

— C

21 —a) Mt )

with C(s, ) being n-independent terms.
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Colored case (s > 1)
(h)*

» The summand s” (pn_,,> \ has a factor s(1—)h.

For 0 < a < 1, exponentially growing (colored case (s > 1)).
= Saddle point value of the sum: h, = O(n)

» Saddle point analysis for the sum leads to

2 N a
Saa=n @ In [U(slza -|—5_127 +5—1/2>}
' 11—«

1+«

— C

2(1 — «) N+ C(s,a)

with C(s, ) being n-independent terms.

» The saddle point value is h, = n—r—>—5-—
s2a+s 2a+1
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Colored case (s > 1)

» The summand s” (pf,’_’),)u has a factor s

(l—oa)h.
For 0 < a < 1, exponentially growing (colored case (s > 1)).

= Saddle point value of the sum: h, = O(n)
» Saddle point analysis for the sum leads to
2« l1-a _l-a -1/2
Saa=n In[o(sza +s 22 +s )}
' 1-«
14+ a
2(1 - )

nn+ C(s,a)
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Colored case (s > 1)

» The summand s” (pf,’_’),)u has a factor s(1—)h

For 0 < a < 1, exponentially growing (colored case (s > 1)).
= Saddle point value of the sum: h, = O(n)

» Saddle point analysis for the sum leads to

2 —a Ca
Saa=n @ In [o’(slza -|—5_127 +5—1/2>}
’ 11—«
1+«
— C
2(1—-a) 1t Cs )

with C(s, ) being n-independent terms.

» The saddle point value is h, = n—sf"“_s—“ + 0(n).
. 3 s2a +s 2a +1
» Linear growth in n.

» Universal meaning of the Inn term? (Same as Fredkin case)
» Note: &« —+ 1 or s — 1 limit does not commute with the
n — oo limit.
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» For o > 1, the factor s(!=® in the summand s” (p%)u

exponentially decays.
= hsS O (ﬁ) = 0(n®) dominantly contributes to the
sum.

» The result:

= —— | 0.
- nn+ O(n°)

» Logarithmic growth
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Rényi entropy for av > 1
» For o > 1, the factor s(!=® in the summand s” (p%) '
exponentially decays.

= hsS O (ﬁ) = 0(n®) dominantly contributes to the

sum.

» The result:

Sp 0= Sa Inn+ O(n).

’ 2(a—1)

» Logarithmic growth
» o — 1 ors— 1 limit does not commute with the n — oo limit.
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Réyni entropy of Motzkin model 4 [F.S., Korepin, 2018]

Phase transition

> Sa o grows as O(n) for 0 < o < 1 while as O(In n) for o > 1.
= Non-analytic behavior at &« = 1 (Phase transition)

> In terms of the entanglement Hamiltonian,
Traps="Tra e Hent. a: “inverse temperature”
» 0 < a < 1: "high temperature”
(Height of dominant paths h = O(n))
» a > 1: “low temperature”
(Height of dominant paths h = O(n%))

» The transition point o = 1 itself forms the third phase.

SA o O(In n) O(v/n) O(n)

)

1/«



Summary and discussion



Summary and discussion 1

Summary

» We have reviewed the colored Motzkin spin models and their
cousins which yield large entanglement entropy proportional
to a square root or linear of the volume.



Summary and discussion 1

Summary

» We have reviewed the colored Motzkin spin models and their
cousins which yield large entanglement entropy proportional
to a square root or linear of the volume.

» We have extended the models by introducing additional d.o.f.

based on Symmetric Inverse Semigroups.
[F.S., Padmanabhan, 2018; Padmanabhan, F.S., Korepin, 2018]



Summary and discussion 1

Summary

» We have reviewed the colored Motzkin spin models and their
cousins which yield large entanglement entropy proportional
to a square root or linear of the volume.

» We have extended the models by introducing additional d.o.f.
based on Symmetric Inverse Semigroups.

[F.S., Padmanabhan, 2018; Padmanabhan, F.S., Korepin, 2018]

» As a feature of the extended models,

Anderson-like localization occurs in excited states
corresponding to disconnected paths.

>
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» We also have a similar result for the Fredkin spin chain.
[F.S., Korepin, 2018]
» The same phase transition occurs for chain of general length

» In the deformed Fredkin model with s > 1 and t > 1, such
phase transition does not happen. [Udagawa, Katsura 2017]
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» Continuum limit (QFT description)? (In particular, for colored
case) [Chen, Fradkin, Witczak-Krempa 2017]

» Holography? [Alexander, Klich 2018]
Application to quantum gravity or black holes?

[Personal speculation]

Boundary: Sp~InLs < Bulk: geodesic length on AdS,
Sa~+La < Bulk: geodesic length on

2D random surface

» Higher-dimensional models (d = 2,3, ...)?

Thank you very much for your attention!
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