Highly entangled quantum spin chains

Fumihiko Sugino

Center for Theoretical Physics of the Universe, Institute for Basic Science

10th Mathematical Physics Meeting: School and Conference on Modern Mathematical Physics, Belgrade, Sept. 10, 2019

Mainly based on

Bravyi et al, Phys. Rev. Lett. **118** (2012) 207202, arXiv: 1203.5801 R. Movassagh and P. Shor, Proc. Natl. Acad. Sci. **113** (2016) 13278, arXiv: 1408.1657 F.S. and V. Korepin, Int. J. Mod. Phys. B **32** (2018) no.28, 1850306, arXiv:1806.04049

Outline

Introduction

Motzkin spin model

Colored Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Quantum entanglement

 Most surprising feature of quantum mechanics, No analog in classical mechanics

Quantum entanglement

- Most surprising feature of quantum mechanics, No analog in classical mechanics
- From pure state of the full system S: ρ = |ψ⟩⟨ψ|, reduced density matrix of a subsystem A: ρ_A = Tr _{S−A} ρ can become mixed states, and has nonzero entanglement entropy

$$S_A = -\mathrm{Tr}_A \left[\rho_A \ln \rho_A \right].$$

This is purely a quantum property.

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- Gapped systems in 1D are proven to obey the area law. [Hastings 2007]

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- ▶ Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) ⇒ Gapless
- ► For gapless case, (1 + 1)-dimensional CFT violates logarithmically: S_A = ^c/₃ ln (volume of A). [Calabrese, Cardy 2009]

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- ▶ Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) ⇒ Gapless
- ► For gapless case, (1 + 1)-dimensional CFT violates logarithmically: S_A = ^c/₃ ln (volume of A). [Calabrese, Cardy 2009]
- ► Belief for gapless case in *D*-dim. (over two decades) : $S_A = O(L^{D-1} \ln L)$ (*L*: length scale of *A*)

- Ground states of quantum many-body systems with local interactions typically exhibit the area law behavior of the entanglement entropy: $S_A \propto (\text{area of } A)$
- ▶ Gapped systems in 1D are proven to obey the area law. [Hastings 2007] (Area law violation) ⇒ Gapless
- ► For gapless case, (1 + 1)-dimensional CFT violates logarithmically: S_A = ^c/₃ ln (volume of A). [Calabrese, Cardy 2009]
- ► Belief for gapless case in *D*-dim. (over two decades) : $S_A = O(L^{D-1} \ln L)$ (*L*: length scale of *A*)
- Recently, 1D solvable spin chain models which exhibit significant area-law violation have been discovered.
 - ► Beyond logarithmic violation: $S_A \propto \sqrt{\text{(volume of } A)}$ [Movassagh, Shor 2014], [Salberger, Korepin 2016] Counterexamples of the belief!

Motzkin spin model

Colored Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

- ▶ 1D spin chain at sites $i \in \{1, 2, \cdots, 2n\}$
- Spin-1 state at each site can be regarded as up, down and flat steps;

$$|u\rangle \Leftrightarrow \nearrow, \qquad |d\rangle \Leftrightarrow \searrow, \qquad |0\rangle \Leftrightarrow \longrightarrow$$

- 1D spin chain at sites $i \in \{1, 2, \cdots, 2n\}$
- Spin-1 state at each site can be regarded as up, down and flat steps;

$$|u\rangle \Leftrightarrow \nearrow, \qquad |d\rangle \Leftrightarrow \searrow, \qquad |0\rangle \Leftrightarrow \longrightarrow$$

► Each spin configuration ⇔ length-2n walk in (x, y) plane Example)

[Bravyi et al 2012]

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$, $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

[Bravyi et al 2012]

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$, $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

► Bulk part:
$$H_{bulk} = \sum_{j=1}^{2n-1} \prod_{j,j+1}$$
,
 $\prod_{j,j+1} = |D\rangle_{j,j+1} \langle D| + |U\rangle_{j,j+1} \langle U| + |F\rangle_{j,j+1} \langle F|$

(local interactions) with

$$egin{aligned} &|D
angle \equiv rac{1}{\sqrt{2}} \left(|0, \ d
angle - |d, \ 0
angle
ight), \ &|U
angle \equiv rac{1}{\sqrt{2}} \left(|0, \ u
angle - |u, \ 0
angle
ight), \ &|F
angle \equiv rac{1}{\sqrt{2}} \left(|0, \ 0
angle - |u, \ d
angle
ight). \end{aligned}$$

[Bravyi et al 2012]

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$, $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

► Bulk part:
$$H_{bulk} = \sum_{j=1}^{2n-1} \prod_{j,j+1}$$
,
 $\prod_{j,j+1} = |D\rangle_{j,j+1} \langle D| + |U\rangle_{j,j+1} \langle U| + |F\rangle_{j,j+1} \langle F|$

(local interactions) with

$$egin{aligned} &|D
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,d
angle - |d,\,0
angle
ight), \ &|U
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,u
angle - |u,\,0
angle
ight), \ &|F
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,0
angle - |u,\,d
angle
ight). \end{aligned}$$

[Bravyi et al 2012]

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$, $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

► Bulk part:
$$H_{bulk} = \sum_{j=1}^{2n-1} \prod_{j,j+1}$$
,
 $\prod_{j,j+1} = |D\rangle_{j,j+1} \langle D| + |U\rangle_{j,j+1} \langle U| + |F\rangle_{j,j+1} \langle F|$

(local interactions) with

$$egin{aligned} &|D
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,d
angle - |d,\,0
angle
ight), \ &|U
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,u
angle - |u,\,0
angle
ight), \ &|F
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,0
angle - |u,\,d
angle
ight). \end{aligned}$$

[Bravyi et al 2012]

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$, $H_{bdy} = |d\rangle_1 \langle d| + |u\rangle_{2n} \langle u|$

► Bulk part:
$$H_{bulk} = \sum_{j=1}^{2n-1} \prod_{j,j+1}$$
,
 $\prod_{j,j+1} = |D\rangle_{j,j+1} \langle D| + |U\rangle_{j,j+1} \langle U| + |F\rangle_{j,j+1} \langle F|$

(local interactions) with

$$egin{aligned} &|D
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,d
angle - |d,\,0
angle
ight), \ &|U
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,u
angle - |u,\,0
angle
ight), \ &|F
angle \equiv rac{1}{\sqrt{2}} \left(|0,\,0
angle - |u,\,d
angle
ight). \end{aligned}$$

"gauge equivalence".

[Bravyi et al 2012]

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$ \Downarrow

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$

• $H_{Motzkin}$ is the sum of projection operators.

1

 \Rightarrow Positive semi-definite spectrum

We find the unique zero-energy ground state.

Hamiltonian: $H_{Motzkin} = H_{bulk} + H_{bdy}$

• $H_{Motzkin}$ is the sum of projection operators.

 \Rightarrow Positive semi-definite spectrum

- We find the unique zero-energy ground state.
 - Each projector in $H_{Motzkin}$ annihilates the zero-energy state.

 \Rightarrow Frustration free

► The ground state corresponds to randoms walks starting at (0,0) and ending at (2n,0) restricted to the region y ≥ 0 (Motzkin Walks (MWs)).

Example) 2n = 4 case, MWs:

Ground state:

$$|P_4\rangle = \frac{1}{\sqrt{9}} [|0000\rangle + |ud00\rangle + |0ud0\rangle + |00ud\rangle + |u0d0\rangle + |0u0d\rangle + |u00d\rangle + |udud\rangle + |uudd\rangle].$$

 \uparrow

Note

Forbidden paths for the ground state

1. Path entering y < 0 region

Forbidden by H_{bdy}

2. Path ending at nonzero height

Forbidden by H_{bdy}

[Bravyi et al 2012]

In terms of S = 1 spin matrices

$$S_z = \begin{pmatrix} 1 & & \\ & 0 & \\ & & -1 \end{pmatrix}, \quad S_{\pm} \equiv \frac{1}{\sqrt{2}}(S_x \pm iS_y) = \begin{pmatrix} & 1 & & \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & & \\ & 1 & \end{pmatrix},$$

$$\begin{aligned} H_{bulk} &= \frac{1}{2} \sum_{j=1}^{2n-1} \left[1_j 1_{j+1} - \frac{1}{4} S_{zj} S_{zj+1} - \frac{1}{4} S_{zj}^2 S_{zj+1} + \frac{1}{4} S_{zj} S_{zj+1}^2 \right] \\ &- \frac{3}{4} S_{zj}^2 S_{zj+1}^2 + S_{+j} (S_z S_{-})_{j+1} + S_{-j} (S_+ S_z)_{j+1} - (S_- S_z)_j S_{+j+1} \\ &- (S_z S_+)_j S_{-j+1} - (S_- S_z)_j (S_+ S_z)_{j+1} - (S_z S_+)_j (S_z S_{-})_{j+1} \right], \\ H_{bdy} &= \frac{1}{2} \left(S_z^2 - S_z \right)_1 + \frac{1}{2} \left(S_z^2 + S_z \right)_{2n} \end{aligned}$$

Quartic spin interactions

[Bravyi et al 2012]

Entanglement entropy of the subsystem $A = \{1, 2, \dots, n\}$:

▶ Normalization factor of the ground state $|P_{2n}\rangle$ is given by the number of MWs of length 2n: $M_{2n} = \sum_{k=0}^{n} C_k \binom{2n}{2k}$.

 $C_k = \frac{1}{k+1} \binom{2k}{k}$: Catalan number

with $p_{n,n}^{(h)} \equiv \frac{(M_n^{(h)})^2}{M_n^4}$.

Entanglement entropy of the subsystem $A = \{1, 2, \dots, n\}$:

▶ Normalization factor of the ground state $|P_{2n}\rangle$ is given by the number of MWs of length 2n: $M_{2n} = \sum_{k=0}^{n} C_k \binom{2n}{2k}$.

 $C_k = \frac{1}{k+1} \binom{2k}{k}$: Catalan number

Consider to trace out the density matrix ρ = |P_{2n}⟩⟨P_{2n}| w.r.t. the subsystem B = {n + 1, · · · , 2n}. Schmidt decomposition:

$$\left|P_{2n}\right\rangle = \sum_{h\geq 0} \sqrt{p_{n,n}^{(h)}} \left|P_n^{(0\to h)}\right\rangle \otimes \left|P_n^{(h\to 0)}\right\rangle$$

 \uparrow Paths from (0,0) to (*n*, *h*)

[Bravyi et al 2012]

►
$$M_n^{(h)}$$
 is the number of paths in $P_n^{(0 \to h)}$.
For $n \to \infty$, Gaussian distribution

$$p_{n,n}^{(h)} \sim \frac{3\sqrt{6}}{\sqrt{\pi}} \frac{(h+1)^2}{n^{3/2}} e^{-\frac{3}{2} \frac{(h+1)^2}{n}} \times [1 + O(1/n)].$$

Reduced density matrix

$$\rho_{A} = \operatorname{Tr}_{B}\rho = \sum_{h \ge 0} p_{n,n}^{(h)} \left| P_{n}^{(0 \to h)} \right\rangle \left\langle P_{n}^{(0 \to h)} \right|$$

Entanglement entropy

$$S_{A} = -\sum_{h \ge 0} p_{n,n}^{(h)} \ln p_{n,n}^{(h)}$$

= $\frac{1}{2} \ln n + \frac{1}{2} \ln \frac{2\pi}{3} + \gamma - \frac{1}{2}$ (γ : Euler constant)

up to terms vanishing as $n \to \infty$.

Notes

The system is critical (gapless).
 S_A is similar to the (1 + 1)-dimensional CFT.

Notes

- The system is critical (gapless).
 S_A is similar to the (1 + 1)-dimensional CFT.
- ▶ But, gap scales as O(1/n^z) with z ≥ 2. (numerically, z ~ 3) The system cannot be described by relativistic CFT.

Notes

- The system is critical (gapless).
 S_A is similar to the (1 + 1)-dimensional CFT.
- ▶ But, gap scales as O(1/n^z) with z ≥ 2. (numerically, z ~ 3) The system cannot be described by relativistic CFT.
- As we will see later, the Rényi entropy exhibits different behavior from the CFT case.

Notes

- The system is critical (gapless).
 S_A is similar to the (1 + 1)-dimensional CFT.
- ▶ But, gap scales as O(1/n^z) with z ≥ 2. (numerically, z ~ 3) The system cannot be described by relativistic CFT.
- As we will see later, the Rényi entropy exhibits different behavior from the CFT case.
- Excitations have not been much investigated.

Motzkin spin model

Colored Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

▶ Introducing color d.o.f. $k = 1, 2, \dots, s$ to up and down spins as

$$|u^k\rangle \Leftrightarrow \checkmark, |d^k\rangle \Leftrightarrow \checkmark, |0\rangle \Leftrightarrow _$$

Color d.o.f. decorated to Motzkin Walks

► Introducing color d.o.f. $k = 1, 2, \dots, s$ to up and down spins as

$$\left| u^{k} \right\rangle \Leftrightarrow \overset{k}{\nearrow}, \qquad \left| d^{k} \right\rangle \Leftrightarrow \overset{k}{\searrow}, \qquad \left| 0 \right\rangle \Leftrightarrow \longrightarrow$$

Color d.o.f. decorated to Motzkin Walks

- Hamiltonian $H_{cMotzkin} = H_{bulk} + H_{bdy}$
 - Bulk part consisting of local interactions:

$$H_{bulk} = \sum_{j=1}^{2n-1} \left(\Pi_{j,j+1} + \Pi_{j,j+1}^{cross} \right),$$

$$\Pi_{j,j+1} = \sum_{k=1}^{s} \left[\left| D^{k} \right\rangle_{j,j+1} \left\langle D^{k} \right| + \left| U^{k} \right\rangle_{j,j+1} \left\langle U^{k} \right| + \left| F^{k} \right\rangle_{j,j+1} \left\langle F^{k} \right| \right] \right]$$

with

[Movassagh, Shor 2014]

$$\begin{split} \left| D^{k} \right\rangle &\equiv \frac{1}{\sqrt{2}} \left(\left| 0, \, d^{k} \right\rangle - \left| d^{k}, \, 0 \right\rangle \right), \\ \left| U^{k} \right\rangle &\equiv \frac{1}{\sqrt{2}} \left(\left| 0, \, u^{k} \right\rangle - \left| u^{k}, \, 0 \right\rangle \right), \\ \left| F^{k} \right\rangle &\equiv \frac{1}{\sqrt{2}} \left(\left| 0, \, 0 \right\rangle - \left| u^{k}, \, d^{k} \right\rangle \right), \end{split}$$

and

$$\Pi_{j,j+1}^{cross} = \sum_{k
eq k'} \left| u^k, \ d^{k'} \right\rangle_{j,j+1} \left\langle u^k, \ d^{k'} \right|.$$

 \Rightarrow Colors should be matched in up and down pairs.

Boundary part

$$H_{bdy} = \sum_{k=1}^{s} \left(\left| d^{k} \right\rangle_{1} \left\langle d^{k} \right| + \left| u^{k} \right\rangle_{2n} \left\langle u^{k} \right| \right).$$

Still unique ground state with zero energy

[Movassagh, Shor 2014]

- Still unique ground state with zero energy
- Example) 2n = 4 case,

$$|P_{4}\rangle = \frac{1}{\sqrt{1+6s+2s^{2}}} \left[|0000\rangle + \sum_{k=1}^{s} \left\{ \left| u^{k} d^{k} 00 \right\rangle + \dots + \left| u^{k} 00 d^{k} \right\rangle \right\} + \sum_{k,k'=1}^{s} \left\{ \left| u^{k} d^{k} u^{k'} d^{k'} \right\rangle + \left| u^{k} u^{k'} d^{k'} d^{k} \right\rangle \right\} \right].$$

Entanglement entropy

Paths from (0,0) to (n, h), P_n^(0→h), have h unmatched up steps.
 Let P_n^(0→h)({κ_m}) be paths with the colors of unmatched up steps frozen.

(unmatched up from height (m-1) to $m)
ightarrow u^{\kappa_m}$

Similarly,

 $P_n^{(h \to 0)} \to \tilde{P}_n^{(h \to 0)}(\{\kappa_m\}),$

(unmatched down from height m to (m-1)) $\rightarrow d^{\kappa_m}$.

• The numbers satisfy
$$M_n^{(h)} = s^h \tilde{M}_n^{(h)}$$
.
Example

$$2n = 8$$
 case, $h = 2$

[Movassagh, Shor 2014]

Schmidt decomposition

$$|P_{2n}\rangle = \sum_{h\geq 0} \sum_{\kappa_1=1}^{s} \cdots \sum_{\kappa_h=1}^{s} \sqrt{p_{n,n}^{(h)}} \\ \times \left| \tilde{P}_n^{(0\to h)}(\{\kappa_m\}) \right\rangle \otimes \left| \tilde{P}_n^{(h\to 0)}(\{\kappa_m\}) \right\rangle$$

with

$$p_{n,n}^{(h)}=\frac{\left(\tilde{M}_{n}^{(h)}\right)^{2}}{M_{2n}}.$$

Reduced density matrix

$$\rho_A = \sum_{h \ge 0} \sum_{\kappa_1=1}^{s} \cdots \sum_{\kappa_h=1}^{s} p_{n,n}^{(h)} \\ \times \left| \tilde{P}_n^{(0 \to h)}(\{\kappa_m\}) \right\rangle \left\langle \tilde{P}_n^{(0 \to h)}(\{\kappa_m\}) \right|.$$

[Movassagh, Shor 2014]

• For
$$n \to \infty$$
,

$$p_{n,n}^{(h)} \sim \frac{\sqrt{2} \, s^{-h}}{\sqrt{\pi} \, (\sigma n)^{3/2}} \, (h+1)^2 \, e^{-\frac{(h+1)^2}{2\sigma n}} \times [1 + O(1/n)]$$

with $\sigma \equiv \frac{\sqrt{s}}{2\sqrt{s+1}}$. Note: Effectively $h \lesssim O(\sqrt{n})$.

Entanglement entropy

$$S_A = -\sum_{h\geq 0} s^h p_{n,n}^{(h)} \ln p_{n,n}^{(h)}$$

[Movassagh, Shor 2014]

• For
$$n \to \infty$$
,

$$p_{n,n}^{(h)} \sim \frac{\sqrt{2} \, s^{-h}}{\sqrt{\pi} \, (\sigma n)^{3/2}} \, (h+1)^2 \, e^{-\frac{(h+1)^2}{2\sigma n}} \times [1 + O(1/n)]$$

with $\sigma \equiv \frac{\sqrt{s}}{2\sqrt{s+1}}$. Note: Effectively $h \lesssim O(\sqrt{n})$.

Entanglement entropy

$$S_A = -\sum_{h \ge 0} s^h p_{n,n}^{(h)} \ln p_{n,n}^{(h)}$$

= $(2 \ln s) \sqrt{\frac{2\sigma n}{\pi}} + \frac{1}{2} \ln n + \frac{1}{2} \ln(2\pi\sigma) + \gamma - \frac{1}{2} - \ln s$

up to terms vanishing as $n \to \infty$. Grows as \sqrt{n} .

Comments

Matching color
$$\Rightarrow s^{-h}$$
 factor in $p_{n,n}^{(h)}$
 \Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A

Comments

- Matching color $\Rightarrow s^{-h}$ factor in $p_{n,n}^{(h)}$ \Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A
- For spin 1/2 chain (only up and down), the model in which similar behavior exhibits in colored as well as uncolored cases has been constructed. (Fredkin model) [Salberger, Korepin 2016]

Comments

- Matching color $\Rightarrow s^{-h}$ factor in $p_{n,n}^{(h)}$ \Rightarrow crucial to $O(\sqrt{n})$ behavior in S_A
- For spin 1/2 chain (only up and down), the model in which similar behavior exhibits in colored as well as uncolored cases has been constructed. (Fredkin model) [Salberger, Korepin 2016]
- Deformation of models to achieve the volume law behavior $(S_A \propto n)$ Weighted Motzkin/Dyck walks [Zhang et al, Salberger et al 2016]

Introduction

Motzkin spin model

Colored Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

[Rényi, 1970]

Rényi entropy has further importance than the von Neumann entanglement entropy:

$$S_{A,\alpha} = \frac{1}{1-\alpha} \ln \operatorname{Tr}_A \rho_A^{\alpha}$$
 with $\alpha > 0$ and $\alpha \neq 1$.

[Rényi, 1970]

Rényi entropy has further importance than the von Neumann entanglement entropy:

$$\mathcal{S}_{\mathcal{A},\, lpha} = rac{1}{1-lpha}\,\ln \operatorname{Tr}_{\mathcal{A}}
ho^{lpha}_{\mathcal{A}} \qquad ext{with } lpha > 0 ext{ and } lpha
eq 1.$$

► Generalization of the von Neumann entanglement entropy: $\lim_{\alpha \to 1} S_{A,\alpha} = S_A$

[Rényi, 1970]

Rényi entropy has further importance than the von Neumann entanglement entropy:

$$S_{A,\,\alpha} = rac{1}{1-lpha}\,\ln \operatorname{Tr}_A
ho_A^lpha \qquad ext{with } lpha > 0 ext{ and } lpha
eq 1.$$

- ► Generalization of the von Neumann entanglement entropy: $\lim_{\alpha \to 1} S_{A, \alpha} = S_A$
- ► Reconstructs the whole spectrum of the entanglement Hamiltonian $H_{\text{ent},A} \equiv -\ln \rho_A$.

[Rényi, 1970]

Rényi entropy has further importance than the von Neumann entanglement entropy:

$$S_{A,\,\alpha} = rac{1}{1-lpha}\,\ln {
m Tr}_A\,
ho^lpha_A \qquad {
m with}\,\,lpha > 0\,\,{
m and}\,\,lpha
eq 1.$$

- ► Generalization of the von Neumann entanglement entropy: $\lim_{\alpha \to 1} S_{A, \alpha} = S_A$
- ► Reconstructs the whole spectrum of the entanglement Hamiltonian $H_{\text{ent},A} \equiv -\ln \rho_A$.
- For S_{A,α} (0 < α < 1), the gapped systems in 1D is proven to obey the area law. [Huang, 2015]
 For (1+1)D CFT, S_{A,α} = ^c/₆ (1 + ¹/_α) ln (volume of A)

[Rényi, 1970]

Rényi entropy has further importance than the von Neumann entanglement entropy:

$$S_{A,\,\alpha} = rac{1}{1-lpha}\,\ln {
m Tr}_A\,
ho^lpha_A \qquad {
m with}\,\,lpha > 0\,\,{
m and}\,\,lpha
eq 1.$$

- ► Generalization of the von Neumann entanglement entropy: $\lim_{\alpha \to 1} S_{A, \alpha} = S_A$
- ► Reconstructs the whole spectrum of the entanglement Hamiltonian $H_{\text{ent},A} \equiv -\ln \rho_A$.
- For S_{A,α} (0 < α < 1), the gapped systems in 1D is proven to obey the area law. [Huang, 2015]
 For (1+1)D CFT, S_{A,α} = ^c/₆ (1 + ¹/_α) ln (volume of A)

Here, we analytically compute the Rényi entropy of half-chain in the Motzkin model.

New phase transition found at $\alpha = 1!$

Introduction

Motzkin spin model

Colored Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Réyni entropy of Motzkin model 1 [F.S., Korepin, 2018]

What we compute is the asymptotic behavior of

$$S_{A,\alpha} = \frac{1}{1-\alpha} \ln \sum_{h=0}^{n} s^{h} \left(p_{n,n}^{(h)} \right)^{\alpha}.$$

What we compute is the asymptotic behavior of

$$S_{\mathcal{A},\,\alpha} = rac{1}{1-lpha}\,\ln\sum_{h=0}^n s^h\left(p_{n,n}^{(h)}
ight)^lpha.$$

• For colorless case (s = 1), we obtain

$$S_{A,\alpha} = \frac{1}{2} \ln n + \frac{1}{1-\alpha} \ln \Gamma \left(\alpha + \frac{1}{2} \right) \\ - \frac{1}{2(1-\alpha)} \left\{ (1+2\alpha) \ln \alpha + \alpha \ln \frac{\pi}{24} + \ln 6 \right\}$$

up to terms vanishing as $n \to \infty$.

What we compute is the asymptotic behavior of

$$S_{\mathcal{A},\,\alpha} = rac{1}{1-lpha}\,\ln\sum_{h=0}^n s^h\left(p_{n,n}^{(h)}
ight)^lpha.$$

• For colorless case (s = 1), we obtain

$$S_{A,\alpha} = \frac{1}{2} \ln n + \frac{1}{1-\alpha} \ln \Gamma \left(\alpha + \frac{1}{2} \right) \\ - \frac{1}{2(1-\alpha)} \left\{ (1+2\alpha) \ln \alpha + \alpha \ln \frac{\pi}{24} + \ln 6 \right\}$$

up to terms vanishing as $n \to \infty$.

- Logarithmic growth, but different from the CFT case
- Reduces to S_A in the $\alpha \rightarrow 1$ limit.
- Consistent with half-chain case in the result in [Movassagh, 2017]

• The summand $s^h \left(p_{n,n}^{(h)}\right)^{\alpha}$ has a factor $s^{(1-\alpha)h}$.

The summand s^h (p^(h)_{n,n})^α has a factor s^{(1−α)h}.
 For 0 < α < 1, exponentially growing (colored case (s > 1)).
 ⇒ Saddle point value of the sum: h_{*} = O(n)

- The summand s^h (p^(h)_{n,n})^α has a factor s^{(1−α)h}.
 For 0 < α < 1, exponentially growing (colored case (s > 1)).
 ⇒ Saddle point value of the sum: h_{*} = O(n)
- Saddle point analysis for the sum leads to

$$S_{A,\alpha} = n \frac{2\alpha}{1-\alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] \\ + \frac{1+\alpha}{2(1-\alpha)} \ln n + C(s,\alpha)$$

with $C(s, \alpha)$ being *n*-independent terms.

- The summand s^h (p^(h)_{n,n})^α has a factor s^{(1−α)h}.
 For 0 < α < 1, exponentially growing (colored case (s > 1)).
 ⇒ Saddle point value of the sum: h_{*} = O(n)
- Saddle point analysis for the sum leads to

$$S_{A,\alpha} = \frac{n}{1-\alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] + \frac{1+\alpha}{2(1-\alpha)} \ln n + C(s,\alpha)$$

with $C(s, \alpha)$ being *n*-independent terms.

• The saddle point value is $h_* = n \frac{s^{\frac{1}{2\alpha}} - s^{1-\frac{1}{2\alpha}}}{s^{\frac{1}{2\alpha}} + s^{1-\frac{1}{2\alpha}} + 1} + O(n^0).$

- The summand s^h (p^(h)_{n,n})^α has a factor s^{(1−α)h}.
 For 0 < α < 1, exponentially growing (colored case (s > 1)).
 ⇒ Saddle point value of the sum: h_{*} = O(n)
- Saddle point analysis for the sum leads to

$$S_{A,\alpha} = \frac{n}{1-\alpha} \frac{2\alpha}{1-\alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] + \frac{1+\alpha}{2(1-\alpha)} \ln n + C(s,\alpha)$$

with $C(s, \alpha)$ being *n*-independent terms.

- The saddle point value is $h_* = n \frac{s \frac{1}{2\alpha} s^{1-\frac{1}{2\alpha}}}{s \frac{1}{2\alpha} + s^{1-\frac{1}{2\alpha}} + 1} + O(n^0).$
- Linear growth in n.
- Universal meaning of the ln n term? (Same as Fredkin case)

- The summand s^h (p^(h)_{n,n})^α has a factor s^{(1−α)h}.
 For 0 < α < 1, exponentially growing (colored case (s > 1)).
 ⇒ Saddle point value of the sum: h_{*} = O(n)
- Saddle point analysis for the sum leads to

$$S_{A,\alpha} = \frac{n}{1-\alpha} \frac{2\alpha}{1-\alpha} \ln \left[\sigma \left(s^{\frac{1-\alpha}{2\alpha}} + s^{-\frac{1-\alpha}{2\alpha}} + s^{-1/2} \right) \right] + \frac{1+\alpha}{2(1-\alpha)} \ln n + C(s,\alpha)$$

with $C(s, \alpha)$ being *n*-independent terms.

- The saddle point value is $h_* = n \frac{s \frac{1}{2\alpha} s^{1-\frac{1}{2\alpha}}}{s \frac{1}{2\alpha} + s^{1-\frac{1}{2\alpha}} + 1} + O(n^0).$
- Linear growth in n.
- Universal meaning of the ln n term? (Same as Fredkin case)
- Note: $\alpha \to 1$ or $s \to 1$ limit does not commute with the $n \to \infty$ limit.

[F.S., Korepin, 2018]

Rényi entropy for $\alpha > 1$

For α > 1, the factor s^{(1−α)h} in the summand s^h (p^(h)_{n,n})^α exponentially decays.

Rényi entropy for $\alpha>1$

► For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(p_{n,n}^{(h)}\right)^{\alpha}$ exponentially decays. $\Rightarrow h \leq O\left(\frac{1}{(\alpha-1)\ln s}\right) = O(n^0)$ dominantly contributes to the sum.

Rényi entropy for $\alpha>1$

- ► For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(p_{n,n}^{(h)}\right)^{\alpha}$ exponentially decays. $\Rightarrow h \leq O\left(\frac{1}{(\alpha-1)\ln s}\right) = O(n^0)$ dominantly contributes to the sum.
- The result:

$$S_{A,\alpha}=\frac{3\alpha}{2(\alpha-1)}\ln n+O(n^0).$$

Rényi entropy for $\alpha > 1$

- ► For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(p_{n,n}^{(h)}\right)^{\alpha}$ exponentially decays. $\Rightarrow h \leq O\left(\frac{1}{(\alpha-1)\ln s}\right) = O(n^0)$ dominantly contributes to the sum.
- The result:

$$S_{A,\alpha}=\frac{3\alpha}{2(\alpha-1)}\ln n+O(n^0).$$

Logarithmic growth

Rényi entropy for $\alpha>1$

- ► For $\alpha > 1$, the factor $s^{(1-\alpha)h}$ in the summand $s^h \left(p_{n,n}^{(h)}\right)^{\alpha}$ exponentially decays. $\Rightarrow h \leq O\left(\frac{1}{(\alpha-1)\ln s}\right) = O(n^0)$ dominantly contributes to the sum.
- The result:

$$S_{A,\alpha}=\frac{3\alpha}{2(\alpha-1)}\ln n+O(n^0).$$

- Logarithmic growth
- $\alpha \rightarrow 1$ or $s \rightarrow 1$ limit does not commute with the $n \rightarrow \infty$ limit.

Phase transition

• $S_{A,\alpha}$ grows as O(n) for $0 < \alpha < 1$ while as $O(\ln n)$ for $\alpha > 1$.

Phase transition

S_{A, α} grows as O(n) for 0 < α < 1 while as O(ln n) for α > 1.
 ⇒ Non-analytic behavior at α = 1 (Phase transition)

Phase transition

- S_{A, α} grows as O(n) for 0 < α < 1 while as O(ln n) for α > 1.
 ⇒ Non-analytic behavior at α = 1 (Phase transition)
- ► In terms of the entanglement Hamiltonian, $\operatorname{Tr}_A \rho_A^{\alpha} = \operatorname{Tr}_A e^{-\alpha H_{\text{ent},A}}$ α : "inverse temperature"

Phase transition

- S_{A, α} grows as O(n) for 0 < α < 1 while as O(ln n) for α > 1.
 ⇒ Non-analytic behavior at α = 1 (Phase transition)
- ► In terms of the entanglement Hamiltonian, $\operatorname{Tr}_A \rho_A^{\alpha} = \operatorname{Tr}_A e^{-\alpha H_{\text{ent},A}}$ α : "inverse temperature"

• $0 < \alpha < 1$: "high temperature"

(Height of dominant paths h = O(n))

• $\alpha > 1$: "low temperature"

(Height of dominant paths $h = O(n^0)$)

Phase transition

.

- S_{A, α} grows as O(n) for 0 < α < 1 while as O(ln n) for α > 1.
 ⇒ Non-analytic behavior at α = 1 (Phase transition)
- ► In terms of the entanglement Hamiltonian, $\operatorname{Tr}_A \rho_A^{\alpha} = \operatorname{Tr}_A e^{-\alpha H_{\text{ent},A}}$ α : "inverse temperature"
 - $0 < \alpha < 1$: "high temperature"

(Height of dominant paths h = O(n))

• $\alpha > 1$: "low temperature"

(Height of dominant paths $h = O(n^0)$)

 \blacktriangleright The transition point $\alpha=1$ itself forms the third phase.

$$S_{A,\alpha}: \qquad O(\ln n) \qquad O(\sqrt{n}) \qquad O(n)$$

$$0 \qquad 1 \qquad 1/\alpha$$

$$h: \qquad O(n^0) \qquad O(\sqrt{n}) \qquad O(n)$$

Introduction

Motzkin spin model

Colored Motzkin model

Rényi entropy

Rényi entropy of Motzkin model

Summary and discussion

Summary and discussion 1

Summary

We have reviewed the colored Motzkin spin models and their cousins which yield large entanglement entropy proportional to a square root or linear of the volume.

Summary and discussion 1

Summary

- We have reviewed the colored Motzkin spin models and their cousins which yield large entanglement entropy proportional to a square root or linear of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.

[F.S., Padmanabhan, 2018; Padmanabhan, F.S., Korepin, 2018]
Summary

- We have reviewed the colored Motzkin spin models and their cousins which yield large entanglement entropy proportional to a square root or linear of the volume.
- We have extended the models by introducing additional d.o.f. based on Symmetric Inverse Semigroups.

[F.S., Padmanabhan, 2018; Padmanabhan, F.S., Korepin, 2018]

- As a feature of the extended models, Anderson-like localization occurs in excited states corresponding to disconnected paths.
 - "2nd quantized paths".

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 - Phase transition at $\alpha = 1$. No analog for other spin chains investigated so far (XX, XY, AKLT,...).

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 - Phase transition at α = 1. No analog for other spin chains investigated so far (XX, XY, AKLT,...).
 - For $0 < \alpha < 1$ ("high temperature"), $S_{A, \alpha} = O(n)$.
 - For $\alpha > 1$ ("low temperature"), $S_{A, \alpha} = O(\ln n)$.

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 - Phase transition at $\alpha = 1$. No analog for other spin chains investigated so far (XX, XY, AKLT,...).
 - For $0 < \alpha < 1$ ("high temperature"), $S_{A, \alpha} = O(n)$.
 - For $\alpha > 1$ ("low temperature"), $S_{A, \alpha} = O(\ln n)$.
- We also have a similar result for the Fredkin spin chain. [F.S., Korepin, 2018]
 - ► The same phase transition occurs for chain of general length

Summary

- We have analytically computed the Rényi entropy of half-chain in the Motzkin model.
 - Phase transition at $\alpha = 1$. No analog for other spin chains investigated so far (XX, XY, AKLT,...).
 - For $0 < \alpha < 1$ ("high temperature"), $S_{A, \alpha} = O(n)$.
 - For $\alpha > 1$ ("low temperature"), $S_{A, \alpha} = O(\ln n)$.
- ► We also have a similar result for the Fredkin spin chain.

[F.S., Korepin, 2018]

- ► The same phase transition occurs for chain of general length
- In the deformed Fredkin model with s > 1 and t > 1, such phase transition does not happen. [Udagawa, Katsura 2017]

Future directions

 Continuum limit (QFT description)? (In particular, for colored case) [Chen, Fradkin, Witczak-Krempa 2017]

Future directions

- Continuum limit (QFT description)? (In particular, for colored case)
 [Chen, Fradkin, Witczak-Krempa 2017]
- Holography?

[Alexander, Klich 2018]

Future directions

- Continuum limit (QFT description)? (In particular, for colored case)
 [Chen, Fradkin, Witczak-Krempa 2017]
- Holography? [Alexander, Klich 2018] Application to quantum gravity or black holes?

[Personal speculation]

Boundary: $S_A \sim \ln L_A \iff$ Bulk: geodesic length on AdS₂ $S_A \sim \sqrt{L_A} \iff$ Bulk: geodesic length on 2D random surface

Future directions

- Continuum limit (QFT description)? (In particular, for colored case)
 [Chen, Fradkin, Witczak-Krempa 2017]
- Holography? [Alexander, Klich 2018] Application to quantum gravity or black holes?

[Personal speculation]

 $\begin{array}{rcl} \mbox{Boundary:} & S_A \sim \ln L_A & \Leftrightarrow & \mbox{Bulk: geodesic length on } AdS_2 \\ & S_A \sim \sqrt{L_A} & \Leftrightarrow & \mbox{Bulk: geodesic length on} \\ & & \mbox{2D random surface} \end{array}$

▶ Higher-dimensional models (*d* = 2, 3, ...)?

Future directions

- Continuum limit (QFT description)? (In particular, for colored case)
 [Chen, Fradkin, Witczak-Krempa 2017]
- Holography? [Alexander, Klich 2018] Application to quantum gravity or black holes?

[Personal speculation]

 $\begin{array}{rcl} \mbox{Boundary:} & S_A \sim \ln L_A & \Leftrightarrow & \mbox{Bulk: geodesic length on } AdS_2 \\ & S_A \sim \sqrt{L_A} & \Leftrightarrow & \mbox{Bulk: geodesic length on} \\ & & \mbox{2D random surface} \end{array}$

▶ Higher-dimensional models (*d* = 2, 3, ...)?

Thank you very much for your attention!