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F. Calogero (1969) - sh-invariance, % potential.

de Alfaro-Fubini-Furlan (1976) - oscillator term addition
(discrete, grounded from below spectrum, ground state).

Conformal Mechanics in the new Millennium (motivations):
Holography: AdS, — CFT;
test particle close to RN BH horizon (Britto-Pacumio et al. 1999).

AdS; holography and SYK models (Maldacena and Stanford 2016).



Contents:

e Construction of the 3D SCQM model

e Construction of the 3D [-deformed oscillator

e Determination of the s/(2|1) lwr’s.

e Alternative selections of Hilbert spaces

(following Miyazaki-Tsutsui '02 and Féhér-Tsutsui-Fiilop '05)
e Spectra and zigzag patterns of vacuum energies.
e Interpolating linear/quadratic regimes for energy
degeneracies

e Orthonormal eigenstates from associated Laguerre
polynomials and spin-spherical harmonics.

e Dimensional reductions.

e Comment on larger algebraic structures.



The 3D SCOM model:
Natural Ansatz for N' = 2 susy (a = 1,2):

1 p
Qe = \ﬁ’)’a (a_ r2N,:/‘> .
[ is a real parameter, r = \/X12 + x22 +x32 the radial coordinate,
while @ = 0;h; and / = x;h; are written in terms of quaternions
(h;); va are Clifford matrices s.t. [ya, hj] = 0; Ng is the Fermion
Parity Operator.
N = 2 supersymmetric quantum mechanics:

{Qa, @b} = 202pH, [H, Q] = 0.
The 4 x 4 matrix supersymmetric Hamiltonian H is given by
_>
PR A C A 69T+ L@;U)}b
0 —1v2 ? L+ 2850y,

where V2 = 92 + 92 + 02 is the three-dimensional Laplacian, s
is the spin-% and L is a orbital angular momentum,



The Hamiltonian H |s Hermltlan Since the spin is 3, the total

angular momentum J L + S of the quantum- mechanlcal
system is half-integer.
The Hamiltonian is non-diagonal; on the other hand, due to

— ]_—)2 2 1, .. 3
{3 = =S = S0+ -0+ - 3),

it gets diagonalized in each sector of given total j and orbital /
angular momentum.

In each such sector it corresponds to a constant kinetic term plus a
diagonal potential term proportional to %2



sl(2|1) superconformal algebra:
DFF construction: Introduce the conformal partner of H as the

rotationally invariant operator K of scaling dimension [K] = —1:
1
K = -r
5l

Verify whether the repeated (anti)commutators of the operators
Q@5 and K close the superconformal algebra s/(2|1). Itis so!.

Four extra operators (Q,, D, R) have to be added. D is the
(bosonic) dilatation operator which, together with H, K, close the

s/(2) subalgebra, two fermionic operators @, and R is the u(1)
R-symmetry bosonic operator of s/(2|1):

[D, H] = —2iH, [D, K] = 2iK, [H, K] =D,
[Daga] = _iQa7 [Daaa] = laﬂ
[H7 Qa] = iQa [K7 Qa] = 7"Qaa
{Qs, Qp} = 20aH, {6a,§b} = 20K, {Q:,Q,} = 66D + eanR,
[R,Q:] = —-3ieasQp, [R, Q] = —3i€anQy,

with the antisymmetric tensor €, normalized so that €10 = 1.



Deformed oscillator:
By setting

Hosc = H+K7

we obtain the 4 x 4 matrix deformed oscillator Hamiltonian Hysc
whose spectrum is discrete and bounded from below.

By construction, the s/(2|1) dynamical symmetry of the H
Hamiltonian acts as a spectrum-generating superalgebra for the
Hosc Hamiltonian.

The explicit expression is

Hose = —fv2 Iy +—(ﬁ2 Is+ BNe(1+4-T,®S - L))+

r2 . ]14.



Appearance of two-component spherical harmonics:

1
j:/—|—5§, for 6 = =£1.
In the given j, / sector we get

T | 1
L-Szia, with a:5(j+§)71.

The energy eigenstates of the system are described with the help of
the two-component Y 1 m (6, ¢) spin spherical harmonics given by

1 [(iia-a ey )
VIS firia-a-omyi0.0) )

where Y/"(0, ¢) (for n=—I,—I+1,...,/) are the ordinary

spherical harmonics.

The spin spherical harmonics yjj_;ém( @) are the eigenstates
J—34,

0,
for the compatible observable operators J. .T L. E J», with
eigenvalues j(j + 1), (j — 26)(j — 30 + 1), m, respectively.
I

:yj,j—%é,m (de)) =



Creation (annihilation) operators:

ab = Qb+ iQp, 32 = Qp — i Qp.
Indeed, we obtain
Hoe = ganal} = 3lan.al},
together with
[Hose: @] = —ab,  [Hose, '] = 2,
For completeness we also present the commutators
[al,aI] = [az,az] = 3-I4+4-1,®S-L—23N.
af = r\/@%(h (0, Fr)— %112 ®S-L— éNF).
They can be factorized as
af = Lybai, with at = (I4- (0, T r) — 2, 8. [ - é/\/,:).
rv2 " d



Lowest weight vectors:
A lowest weight state W, is defined to satisfy

a;\IJ/WS = 0.

Due to the factorization, in both b = 1,2 cases, this is tantamount
to satisfy a~W,s = 0.
The vectors afv and a;v, with v belonging to the lowest weight
representation, differ by a phase.
Therefore, the action of af, aj produces the same ray vector
characterizing a physical state of the Hilbert space.
We search for solutions W¢ ; (r,0,¢) of the form

576’m(r,0,¢) — 6‘?5(r) . e‘5®J}j,j*%6,m (0,¢), Wlth € = :]:1
The sign of € (no summation over this repeated index) refers to
the bosonic (fermionic) states with respective eigenvalues ¢ = +1
(e = —1) of the Fermion Parity Operator Nf; we have e;1 = ( ;)
ande_; = (7).



Solutions:
Solutions are obtained for

fis(r) = Pusae ",

where

1
Y50 (B8) = Oé-i-5€:5(j+§)+ﬁe—1.

The corresponding lowest weight state energy eigenvalue E; 5 (/3)
from

Hosc(B)V] 5,m(r,0,0) = Ejs.(B)Vjsm(r.0,9)

EadB) = 0+ 3)+Bet .

Since Ej 5(/) does not depend on the quantum number m, this
energy eigenvalue is (2j + 1) times degenerate.



Alternative Hilbert spaces
Without loss of generality we can restrict the real parameter 3 to
belong to the half-line 5 > 0 since the mapping g <> —f is
recovered by a similarity transformation which exchanges bosons
into fermions:

SHosc(B)S™! = Hese(—5) with S =01 ®1,.

To the following j, §, €, m quantum numbers,
je%—i_NOa 5::l:17 6::l:]-a m:_j7_j+1>"'7.j7

is associated an s/(2|1) lowest weight vector and its induced rep.
Two choices to select the Hilbert space naturally appear:

@ case i the wave functions can be singular at the origin,
but they need to be normalized,

@ case i the wave functions are assumed to be regular at the
origin.



Case i corresponds in restricting the admissible lowest weight
representations to those satisfying the necessary and sufficient
condition

25.9B) +3 > 0.

The normalizability condition is equivalent to the requirement

Ejse(B) > 0

for the lowest weight energy E;s5.(f3).
Case ii corresponds in restricting the admissible lowest weight
representations to those satisfying the condition

Yse(B) = 0 for B>0.

The single-valuedness of the wave functions at the origin implies
that 7(j5.¢)(8) = 0 can only be realized with vanishing (/ = 0)
orbital angular momentum. At 8 = 0 one recovers the vacuum
state of the undeformed oscillator.

For the deformed 3 > 0 oscillator the strict inequality follows

’y(j’gvg)(ﬂ) > 0 for >0
I



Table (up to j = %) of the 3 range of admissible lowest weight
representations under norm (case i) and reg (case ii) conditions:

Jlofell v | E || norm | reg |
PLA[F] 6 [+ ] =0 ] =0
?‘F - —f3 51_5 Ogﬁfj =0
A B—2 —?+B B>3 B>2
P -B-2[3-B] x
S+ B+1 [ 3+8 ] B=>0 p=>0
s+ -B+1] 3-8 J|o<p<3[o<p<l1
% — |+ 5-3 —§+ﬁ 8>3 B >3
[ B-3[3-8] = x
2l+[+][ B+2 [ 2+B [ B=>0 p=0
3|+ -B+2] -8 |0<B<i[0<B<2
g+l B-4-5+6] f>3 [ 5>4
L Al e eyl x




For the g > 0 deformed oscillators, the Hilbert spaces H norm and
Hreg are direct sums of the lowest weight representations with
J € % + Ny satisfying (depending on §, €)

Hnorm : ,Hreg:
0=+4+1]e=+1 any j any j
b=+1le=-1|j>B-1]j>p+12
§=-1|e=+1| j<B |j<B-3
d=—-1|e=-1 no j no j




Spectrum (Hilbert space H,om)
For 8 > % it is convenient to introduce, via the floor function, the
parameter u, defined as

n={-53=0B-3-15-3, pr=18-3)
sothat pe[0,1[, pe€Np and B:%—Fu—kp.

The results for the spectrum split into six different cases which
have to be separately analyzed:

e case |: [ =0 (the undeformed oscillator),

ecase Il: B=1+p withpeNy(p=0,1,2,...),

@ case llI: 6:%+p, with p € Np,

e case IV 0<B<%,

@ case V: 0<,u<%,thereforeﬁ:%+u+p, with p € Np,
e case VI: % <p<l, thereforeﬂz%%—;ﬂ—p, with p € Np.



The energy eigenvalues corresponding to the above cases are

@ case | E,= g + n, where n € Ny is a non-negative integer.
The vacuum energy is E oc = %; the ground state is four times
degenerated, with two bosonic and two fermionic eigenstates (hence
"2 + 2" )
The vacuum lowest weight vectors are specified by the quantum numbers
j=3%,0=+1,e==%1and (here and in the following) all compatible
values m= —j, ... j.

@ case II: E, =1+ n, with n € No.
The vacuum energy is Eyoc = %; the degeneration of the ground state is
2(p + 1), with p + 1 bosonic and p + 1 fermionic eigenstates, and is
therefore denoted as “(p+ 1) + (p+ 1)¢".
The vacuum lowest weight vectors are specified by j = % + p, with either
=41, e=—-1lord=-1,e=+1.

@ case lll: E, =1+ n, with n € No.
The vacuum energy is Eyoc = %; the degeneration of the ground state is
4p + 2, with 2p bosonic and 2(p + 1) fermionic eigenstates, and is
therefore denoted as “(2p)s + (2p + 2)F".
For p = 0 the two vacuum lowest vectors are specified by j = % 0 =41,
e=—1.
For p > 0 the vacuum lowest vectors are specified either by j = % + p,
§=+4l,e=—lorbyj=p—13% 6=-1e=+1



@ case IV: two series of energy eigenvalues E; = % + B+ n, with n € Np,
are encountered.
The vacuum energy is Eyac = % — f3; the ground state is fermionic and
doubly degenerated (“2¢").
The two vacuum lowest weight vectors are specified by j = % 0 =+1,
e=—1.

@ case V: two series of energy eigenvalues E, = pu+n, Ef =1 —pu+n,
with n € Np, are encountered.
The vacuum energy is E,oc = p; the ground state is bosonic and
(2p + 2)-times degenerated (hence “(2p 4 2)g").
The vacuum lowest weight vectors are specified by j = % +p, 0 =-1,
€= +1.

@ case VI: two series of energy eigenvalues E, =1 —pu+n, E =+ n,
with n € Ny, are encountered.
The vacuum energy is E,oc = 1 — pu; the ground state is fermionic and
(2p + 2)-times degenerated (hence “(2p 4 2)F").
The vacuum lowest weight vectors are specified by j = % +p, § = +1,
e=—1.



Important remark. The energy spectrum of the V and VI cases
coincides under a

duality transformation.

Under this duality transformation the parity (bosonic/fermionic) of
the ground state is exchanged. On the other hand, the
degeneracies of the energy eigenvalues above the ground state are
not respected by the duality transformation.

Example: u = % with p = 0 (dually related 5 = % and g = %
cases).

The lwv's appearing in the first five energy levels are

HEEESA

% %+B 3+F
i §+F X
2 x |3+F
e
4 2 2




Computation of degeneracies:

The degeneracy of each energy level is finite and can be computed
recursively.. Let n(E) be the total number of distinct, admissible,
lwv's in the Hilbert space and let d(E) be the number of
degenerate eigenstates at energy level E. At energy level E + 1 we
have

d(E+1) = d(E)+n(E +1).

The d(E) term in the r.h.s. gives the number of descendant states
obtained by applying aJ{ to the degenerate states at energy E,
while the n(E + 1) term corresponds to the number of



For the case above:

E[ 4] 41
2 4 12
! 6 2
2 2 6
3 2 2
i 2 2

One can see that % is the first energy level where an inequality of
the degeneracies is produced

dy3) # dis(3)



Vacuum Energy (Hilbert space I):

AT VA IR ¥ A R V AU N V A
1 2 3 4 5

The vacuum energy E,.c(3) of the model is portrayed in the y
axis, with 8 up to 8 <5 depicted in the x axis. This diagram
refers to the Hilbert space admitting singular, but normalized wave
functions at the origin. Starting from 5 > % the graph is
composed by a triangle wave of half-open line segments plus
isolated points at § = % + N.



Vacuum Energy (Hilbert space Il):

1 2 3 4 5

The vacuum energy E,.c(3) of the model is portrayed in the y
axis, with 8 up to 8 < 5 depicted in the x axis. This diagram
refers to the Hilbert space satisfying the condition that its wave
functions are regular at the origin. For 8 > 0, the vacuum energy
is always comprised in the interval % < Evac(B) < g



Degeneracy of the eigenstates:
At 8 =0 Hysc corresponds to four copies of the ordinary isotropic
three-dimensional oscillator. Its degeneracy dg—o(n) is

ds—o(n) = 4-d(n),  with  d(n)= %(n2+3n—|—2).

Degeneracies for § = % 4+ Ng and 8 =1+ Ny with H,,orm Hilbert
space:

Case a: 3= % + p (energy levels E, = n+ 1) with p,n € Ny.
The degeneracy d;’:§+p(E”) grows linearly (mimicking a
two-dimensional oscillator) up to n = p; it then grows quadratically
starting from n = p + 1:

dﬂ:%-}—p(En) = 2(n+1)(2p+1)for n=0,1,2,...,p,

dﬁ:%er(En) = 2.(®?+2(p+1)g+ (p+1)2p+1)) for n=p+q with g=0,1,2,....



Case b: =1+ p (energy levels E, = n+ %) with p, n € Ny.

As in the previous case, the degeneracy dg—14,(En) grows linearly
(mimicking a two-dimensional oscillator) up to n = p; it then
grows quadratically starting from n = p + 1:

dﬂ:1+p(En) = 4(n+1)(p+1) for n= 071727"'7p7

da—11p(En) = 2-(¢*+(p+1)g+2(p+1)?) for n=p+gq with ¢g=0,1,2,....



Energy degeneracy at various (:
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Energy degeneracy (y axis) for the H ,orm Hilbert space at the
integer values 8 = 0,2,6,16. In the x axis are reported the 40
lowest energy eigenvalues. The "o bullet

denotes the $ = 0 undeformed oscillator, while “"—", “x" and “4"
stand, respectively, for the 8 = 2,6, 16, cases. One can note the
“bending” of the 5 = 16 curve around energy E = 16.



Orthonormal eigenstates

The excited elgenstates (af )k\Ueém(r 0, ¢), obtained by applying
k times the a; creation operator (1), are orthogonal.

The computation of their normalization factors which make the
wave functions orthonormal involves the computation of
Rodrigues-type formulas for recursive polynomials in the radial
coordinate r. These recursive polynomials can be recovered from
the associated Laguerre's polynomials.

1 2 - - B
af_ = \/E’Y]_{(]I4'(8r—r)—r]12®5'l.—rNF)

"’f,a,m(h 0,6) = eV i tsm (9, ) - Be+5j+%5716—%r2'
The action of é can be read from
7J}Jd*l‘$:m (07 ¢) = _yj,j+%57m (07 d’)
I



)

Even and odd excited states are
2)kp2k (r)r6ﬁ+6j+%57167%r2

( )2k Jém(r70:¢) = es®y”_75m(6) ¢) (
k €:0,8 (r)r€ﬁ+5j+ 6-1,-% 2’

@V 5 n(r0.0) = iV2e e ®Y; 15, (0,6) (-2 P50

where pgfﬁ( ) and pgffllj(r) are r-dependent polynomials
recursively determined by the Rodrigues-type formulas

42 2k 2
PS8Ry = i( - ) o o -r+1E To— 5
2k, j 22k r 2 0 Brfrf% 0 0 ’
F+2 2k+1
piBB () = 1 ( 2 ) 0o g -r+ T2 o,
2ketL,] 22k+1 r ez 0 ar*"*% 0 rﬁei% ’
where

Y =se(B) =€B+8j+30—1.

It follows in particular, from p“m( ) =1, that
3

4, _
p;,J/B() = r2_ _E

and so on.



The associated Laguerre polynomials ij)(x) are introduced
through the position

) xVeX d ik —x
Lk (X) k' (dX) X € °
They satisfy the identities
1 1
L6 = 4060 = 175700,
1
O = (v + 0L () - kL ().
Since
Lgﬂ(x) = —x+~v-—-1,
by setting
x=r’ =75+ 1
=r, Y= >
we can identify
€S.f ~al
P = —L7 ().



By assuming the Ansatz

5, (7+3)
Pres (1) = GL2(r),
via induction one proves that
Ce = (—1) k!
676,“8 6,(5,ﬁ . .
The py, s (r) even and kaHj(r) odd polynomials are expressed, in
terms of the associated Laguerre polynomials, as

€,0,3 (*r+l)

P (r) = (—1)kkiL, 2 (r?),
€,0, v 3
p2ff1’j(r) = (*l)kaIrLE: 2)(r2).

The normalizing factors are recovered from the orthogonal
relations for the associated Laguerre polynomials, given by

MNn+~+1)

G-

+00
/ dxx'ye*XLg,V)(x) Ls,?)(x) =
0



Final results (orthonormal wave functions):

NS

c 5, (7+3 5
wN,2k,j,6,m(rv 0,¢) = e® yj,j—%é,m (0,9) - M;kLSj 2)(r2) rle

with
= k1) -2
My = ( )7 3
F(k + Yy + j)
and
Vi okrrjom(r: 0,6) = e—€®yj,j+%s,m(97¢)'Mijrngb)(rz)'ﬁHe_%
with
= (k!)-2
M;kJrl =

Mk+5+3)




Dimensional reductions:
The 3D — 2D case

Restrictions:

@: h101 + h20>, f = x1h1 + x2ha, r= \/m

_>
The ? L operator entering the Hamiltonians is now given by
S3L3 and is diagonal.

The resulting Hamiltonian Hap o5 corresponds to two copies of the
two-dimensional 2 x 2 matrix Hamiltonians derived from the
quantization of the s/(2|1) worldline sigma-model with two
propagating bosonic and two propagating fermionic fields:

1 1
Haposc = (0% +05) Lt 55 (F°L+ BNe(1+2 Lo ® 03L3)) + 5 L.

_1
2 r2



The 3D — 1D case

Restrictions:

a = h383, /: X3h3, r = 1/X§.

The resulting Hip osc deformed oscillator is (we set x = x3)

1 1 1
HlD,osc - _§0>2< Iy + ﬁ(ﬁz g + BNF) + §X2 - g,

It coincides with the model derived from the quantization of the
world-line sigma model induced by the (1,4, 3) supermultiplet.
The Hip, osc Hamiltonian possesses the larger D(2,1; )
spectrum-generating superalgebra, with a = 5 — %

The s/(2|1) € D(2,1; «) generators are sufficient to determine the
ray vectors of the Hilbert space.

From the dimensional reduction viewpoint, the extra generators
entering D(2,1; «) are associated with an emergent symmetry.



Original spectrum-generating superalgebra:
o § (f

Superselected 2D oscillator. The bosonic (fermionic) eigenstates
are represented by black (white) dots. The y axis labels the energy
eigenvalues, the x axis labels the so(2) spin components. The solid
edges represent the action of the creation operator from the
osp(1]2) C sl(2|1) subalgebra.Infinite osp(1]2) Iwr's are required to
produce the spectrum of the theory.




Mirrored spectrum-generating superalgebra:

4 4 7

« &« O « ¢« Q' ¢
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A mirror dual: the dashed edges represent the action of the

creation operator from the osp(1]2)¢ C s/(2|1)¢ subalgebra,

produced by a new set of “mirrored” operators. As before, infinite

0sp(1|2) ¢ lwr's are required to produce the spectrum. On the other

hand, any energy eigenstate can be obtained from the bosonic

vacuum through a path combining both solid and dashed edges.
I



Thanks a lot for the attention!
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(logo of the group: Algebraic Structures in Field Theory)




