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MOTIVATIONS
» Imaginary time formalism (Felix Bloch and others)
Z|p) =Tr [exp (/3H)] o / Dy eli aTLle(7)]
(0)=¢(8)

Note: the inverse temperature parameter 3 on the quantum side
corresponds to the size of extra dimension (3 on the classical side
» AdS/CFT correspondence (Juan Maldacena and others)

Z[J] = (Qf exp ( / dDH]'(x)d-(x)) €2) = / D ol @ TRLH )]

iaMZI'
Note: the sources | (i.e. coefficients of operators) on the CFT side
correspond to boundary conditions of fields ¢y, = J' on the AdS side
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MOTIVATIONS
» Imaginary time formalism (Felix Bloch and others)
Z|p) =Tr [exp (BH)] o / Dy eli aTLle(7)]
#(0)=¢(h)

Note: the inverse temperature parameter 3 on the quantum side
corresponds to the size of extra dimension (3 on the classical side
» AdS/CFT correspondence (Juan Maldacena and others)

Z[]] = (Qexp (/dD“]"(x)Oi(x)) Q) = / D of &L W)
om=)'
Note: the sources | (i.e. coefficients of operators) on the CFT side

correspond to boundary conditions of fields ¢, = J' on the AdS side
» Quantum-classical duality (arXiv:1903.06083)

ZH]=Tr lexp (ﬁZH,fﬁ]

1R~

/Dx p(ax) ef ZiHIT'(x)



MOTIVATIONS INTRODUCTION COMMUTING OPERATORS ANTI-COMMUTING OPERATORS GENERIC SYSTEMS

[ 00000 000 00000 00000
:

MOTIVATIONS
» Imaginary time formalism (Felix Bloch and others)
Z|p) =Tr [exp (BH)] o / Dy eli aTLle(7)]
#(0)=¢(h)

Note: the inverse temperature parameter 3 on the quantum side
corresponds to the size of extra dimension (3 on the classical side
» AdS/CFT correspondence (Juan Maldacena and others)

ZU] = <Q\ exp (/ dD'H]( ( )) |Q> /i L D¢ efdmzxﬁ[qy‘(x)]

Note: the sources | (i.e. coefficients of operators) on the CFT side
correspond to boundary conditions of fields ¢y, = J' on the AdS side
» Quantum-classical duality (arXiv:1903.06083)

Z[H] =Tr [exp <5ZH1fI>] /Dx p(x) €? S HI ()
I

1R~

[/ DyDx 6(y xT 0 B2 HT (x)
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SPINOR OPERATORS

Consider N fermionic subsystems described by operators satisfying:

» Commutation relation if a # b
[92,34] = 0 (1)
» Anti-commutation relation
{448} = 20" @)
wherea,b € {1,..,N}and j,k € {1,...,D}.
» Hermitian condition ‘ ‘
A=A, 3)
» Tracelessness condition

T () (3 aee) - ()] =0 @

wherel <a; <..<a, <Nand1 <jig < ... <jkg < Dforallk.
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EXAMPLES

» For D = 2 the spinor operators can be represented by tensor
products of two out of three Pauli matrices (e.g. X and Y),

Moo= Xele..el
B o= Yele.. ol
o= IeXe..el
2 = leY®..®l (5)
Ay = Iole..eX
3 = Iele..eY

u]
]
I
w
i
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» For D = 2 the spinor operators can be represented by tensor

products of two out of three Pauli matrices (e.g. X and Y),

A
42
A

g

XeIlw..
YoI®..
IeX®..
IeY®..

Iol®

Il®..

®I
®I
®I
®l

Y.

(5)

» For D = 4 the spinor operators. can be represented by tensor
products of euclidean Dirac matrices
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EXAMPLES

» For D = 2 the spinor operators can be represented by tensor
products of two out of three Pauli matrices (e.g. X and Y),

Moo= Xele..el
¥ o= YeI®..ol
o= IeXe..el
2 = leY®..®l (5)
Ay = Iole..eX
3 = Iele..eY.

» For D = 4 the spinor operators. can be represented by tensor
products of euclidean Dirac matrices

» Although the dimensionality D is kept arbitrary the two cases
with D =1 and D = 3 will turn out to be dual to simple classical
models on S° and on S? configuration/target spaces.
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HAMILTONIAN

» From the spinor operators we construct a Hamiltonian operator

Hy = Z Hj, ’%1 ’3'11\]}] (6)
j1.-jn€f0,....D}
where 49 = T and all of the components Hj, . j, are real numbers.
» Quantum partition function can be expanded as power series

R . pn . . "
ZqlH] = Tr |exp (BH,) | = > % Tr S Hy A
n=0 i1...jn€{0,....D}

» and each power of Hamiltonian operator into a formal sum

n
Tr Z Hj1~»-jN ’3/11’%\7 = Zh/\ Tr [fA} ()
j1--in€{0,...,D} A

where h14’s represent products of Hj, . j,’s components and *’s the
corresponding products of the spinor operators.
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COMBINATIONS OF TERMS

> Let o(A) be a set of all abstract-indices which are equivalent to A
up to different combinations of terms from Hamiltonian.

» Then A .
> Al =" p(A)ha T4 (8)
A A
where an ordered product of 4} operators is given by
4= oM
for some sign #(I) = +1 and the “average” sign is
p(A) Z 6(I") 9)
BEO‘ (A)

» Then the trace of powers of Hamiltonian can be written in terms
of ordered operators

n

Tr Z ]1 ]NVI VJN ZM hATT[ } .

jl...jNE{O ..... D}
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COMBINATIONS OF TERMS

Tr Z Hj,.. /N“YI A Z” hATI’|: ]
j1.--in€{0,...,D}

» For example, if A represents (Hozﬁfzz) (Hgo’% ), then

ha = HpHs
M= %5
= A8
oYy = 1
wA) = (1+1)/2=1,
but if A represents (Hos%3) (Ho243), then
ha = HpHop
M= 3%
= A
ort) = -1
A) = (1-1)/2=0.

] = =
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PARTITION FUNCTIONS
» Quantum partition function for N spinors with D =1

oo Bn . X . i
Zq[H] = ZF Tr Z H]']___]'N ’yil’leN
n=0 j1.in€{0,1}
» Classical partition function for N scalars x,’s,

ZJH] = N / <deup(xa)> S %

n
> Hipn
j1--ine{0,1}
where x} = x, and x0 = 1.
» The two systems are dual if

N/ (deﬂp(xﬂ)> S H A | =T S Hy o AAN
a j1--iN€{0,1} i1 iNE£0,1}

n

(10)

(11)
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PARTITION FUNCTIONS

» Quantum partition function for N spinors with D =1

n

ZH) =" % Tr S Hy AN (10)
n=0 j1---in€{0,1}

» Classical partition function for N scalars x,’s,
e /3" ) )
S ANICC) Dot (D SRR I
a n=0 j1...in€{0,1}

where x} = x, and x0 = 1.
» The two systems are dual if

N/ <de,¢p(xu)> S H A | =T S Hy o AAN
a j1--iN€{0,1} i1 iNE£0,1}

or using the abstract-indices notation

N / <H dxu,o(x,,)> S ha X =3 w(AhaTr [: I :] .12

where X is the corresponding products of scalars.
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» Since all operators 4.’

and, thus, u(A) = 1 for all A.

s commute their products are such that 't =: T4
» Then by matching individual terms we get

N / <H dxgp(xu)> X' =Tr [: i ;] .

(13)
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MEASURE OF INTEGRATION

» Since all operators 4,’s commute their products are such that I'* =: T :

and, thus, u(A) = 1 for all A.
» Then by matching individual terms we get

N / <H dxgp(xu)> X' =Tr [: " :] . (13)

» The ordered product of operators : I : either contains
> even number of 4, operators for every a

= Tr [FA] — T [1] =N (14)
» or J at least one a for which there is an odd number of 4}’s
-~ Tr [f*‘] -0 (15)

» Then the measure of integration p(x,) should be such that all odd
statistical moments vanish and all even statistical moment are the same,

1 if n iseven
an ada: 16
/(x)p(x)x {Oifnisodd. (16)
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» But this is can be easily achieved with

p(xa) =

0(xa —1)+6(xa +1)

2
which corresponds to a classical partition function

(17)
ZH =N Y >

Y
H;, oy 200N
j1--in€{0,1}

Hy =

exp | B . (18)
xq...xy€{1,-1}
» We conclude that the quantum system is dual to a classical system
Z Hj Ly %1'3'/1\7 < He=
j1--in€{0,1}

>

T B\

Hjpoojy 370
j1--in€{0,1}

where x, are the classical spinors (or classical scalars on S° target space)
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CLASSICAL DUAL
» But this is can be easily achieved with

plxa) = 0(xs — 1) —; 0(xa+1)

which corresponds to a classical partition function

(17)

ZHI=N > exp (B > Hy Ay | (19

xq...xy€{1,-1} j1---in€{0,1}
» We conclude that the quantum system is dual to a classical system
Hq= Z Hj, _jy 'AYT '3'/1\7 & He= Z Hj, _jy x]1] xlzilv
j1--in€{0,1} j1--in€{0,1}

where x, are the classical spinors (or classical scalars on S° target space)
> Note that the eigenvalues of the quantum Hamiltonian must be

Ec= Y Hy_j ¥y, (19)
ji---in€{0,1}

where x € {-1,1}".
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PARTITION FUNCTIONS

» Quantum partition function for a single spinor (N = 1), but with D > 1

_ZZ'Tr[( Hﬂ’) ] (20)
n=0 je{1,...,D}

H] :N/dep(x)i% ( Z H, xf) . 1)
n=0
» The two systems are dual if
N / Pro@) Y ha X = 3 p(AhaTr [: 4]
A
N/dep(x)XA = wulA)Tr [: M :]

N / Prxp(x) H( B AT

[0 I = ua) 22
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» Consider the following two multinomials:
» asum of commuting scalars raised to some even power

2K
(x]+x2+...+x’3) =

>

my+...+mp=2K

>

my+...+mp=2K

(m1+ ... +mp)!

(xhy™ .. (xPyme

(2o mi)!
[ T (m)!

()™ (xPyre

» asum of anti-commuting operators raised to the same power

(G + 3+ o+ (P2)

2K
(,?1+,Ay2+."+ﬁD) _

>

n+...4+np=K

(m + ... +np)! G2 (3P,

>

ny+...4+np=K

(g )"

[T ()

;yl )2711 . (’A}/D)ZHD )

» Separate terms in the expansion of operators represent products of 4krg
applied in different orders (or combinations o (A)) and we are
interested in products of my = 2n; of 4'’s, my = 2m, of 4°’s, etc.
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MEASURE OF INTEGRATION

>

Hk(znk / D 2n,
w(A o d xp(x k
-, 2, M = Ty T «)

where A can represent an arbitrary product of terms with 2n; of 4*’s
» The moments generating function of p(x)

Hk(znk) (ank) 2n1 pg'D B
Z ((Zkznk) IT ! ) [L2m)!

cosh (\/p% + ... +p2D) (23)

» The corresponding characteristic function is

M(ip1, ..., ipp) = cos (y/p% + .t p%) = cos ( Zpﬁ) (24)
\

whose inverse Fourier transform is the desired measure of integration

p(x) = / (zdﬂi)pD cos ( pr) exp (inkpk) . (25)
\/ % x

M(p1, ..., pp)
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dp ) )
5, €08 <\/;> exp(ixp)

(Gx+1)+d(x—-1)),

(26)
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EMERGENT SPACE-TIME

» ForD=1
p(x)

dp ) )
5, €08 <\/;> exp(ixp)

(Ox+1)+6(x—-1)), (26)

Il
M\»—\\

» For arbitrary D we note that

o(x") = p(F,x") = / (;%’ (x" Z(w) exp (ika)
k

k
(27)
solves a D+1-dimensional wave equation,

((aof -> (6k)2> p(x*) =0, (28)

k
with initial conditions

(%,0) s (@) (29)
dp(%,0) = 0 ~@0)

®I
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ANTI-COMMUTING OPERATORS
EXTENDED PARTITION FUNCTION

» Solution of the D+1-dimensional wave equation is given by

o(x) = / Py G (F, 2% 7,06 (7) = HG(F, )
where (with a slight abuse of notations)

(31)
G(x";y") =GE—7.x" =) = G(x" —y") = GE - #,x" — 1)

is the retarded Green’s function of D+1-dim. d’Alembert operator.
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EXTENDED PARTITION FUNCTION
» Solution of the D+1-dimensional wave equation is given by
o(x") = / Py G, 17,00 () = BG(E, 1) (31)
where (with a slight abuse of notations)
G(*;y") = GE—7,x" —y°) = G(* —y") = GE—7,x" =)

is the retarded Green’s function of D+1-dim. d’Alembert operator.
» Extended (into “temporal” direction T) partition function is defined as

ZJ[H,T] = /\/'/dego(Sc',T)exp (ﬁ > H,xj> (32)

je{1,...,D}

N / d"y / d°x exp (5 > H,xf) WG, T; 7,016 (¥)

je{1,....0}
» By construction it satisfies the desired duality condition
Z:H,1] = Z4[H] (33)
and also normalization conditions
Z[H,0] = N. (34)
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EXISTENCE OF DUALITY

» Quantum partition function for N > 1 quantum spinors with D > 1

Z4[H] = Z % Tr Z Hj, Ly 7’ ’Y]N
n=0

j1---in€{0,...,D}

» Classical partition function for a system of ND classical scalars

Z[H =N / (de’xa> p<x>zﬁ—f > Hppdoaf
a n=0

j1.-in€{0,...,.D}
» The two systems are dual if all odd moments vanish and
2nf R
N/ (Hdea> p(x)X* :N/ (Hde”> p(X)H(X’J) f= n [Pt u(A)
a a a,k

» Then the measure only exists if

Me=1f = w(A) = p(B). (36)
i.e. even if A and B are not in the same combination class, (A ) #+ o(B),
but the corresponding products of operators are the same, : [ :=: T'? :,

the statistical moments must also be the same, p(A) = p(B).
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» Consider a Hamiltonian with components which can be expressed as
Hj, jy =

13
Z Hiy. ey TNy
ky...ky€{0,1}
where we assume that Hy.. o = 0 and

(37)
0
Maj = 0o (38)
Tho = O (39)
» Then the Hamiltonian operator
Hy = > Hy Ay (40)
j1---in€{0,...,D}
= Z Hy, . anl' AkN
ky...kne{0,1}
where , ,
=f= Y WA= > M
je{0,....D} je{1
and
.0
A =

o (41)
D}

0 A
a — Z Na,jYa =

(42)
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» Since the combined operators satisfy a commutation relation

[ﬁﬂv ﬁh] =0
we can essentially follow the above analysis with

Z[H] N/ <Hdeap(xa)> Z%
a n=0

N / (Hdoxap(xa)>
where

oo /Bn
>

(43)

>

n
Hj
j1.-in€{0,...,D}

a1 iN
L X

n
k k
E Hiyo ke X3 XN
n=0 ky...kye{0,1}
1 1
Xa = Xa = E 77a,]'xl
je{1,...,D}
» Result:

xo =1

ZJH,T) = N/ (H d°x, 00G(Xa, Ta)>

exp | B Z HilmiN XJ11 J(JN )
j1---in€0,1}
] = =
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EXAMPLES

» Note that the measure of integration is already normalized,

/ <Hdea aoc(fa,n)> =1, (44)

but it can be interpreted as probability only if oG (¥, T.) > 0.

» For example, when D =1
dx, 1 1
ZC[H7 T] = N/H (7 (5(Xa - Tu) + 6(xa + Tu))) exp (IBHC) ) (45)

in agreement with pervious results, or when D = 3

ZJ[H,T] = N/H (fﬁ’;’z (Z (xfi)Z B Tg)) exp (BH:).  (46)

» Of course there is no reason to expect that the measure will remain
positive for more general quantum systems and then the dual system
defined in a similar manner would not be classical per se.
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» We considered a quantum-classical duality mapping between
quantum and classical systems of the form
ZH] =T |exp [ B HII'

1

) /Dx p(x) DY HT! (x)
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» We considered a quantum-classical duality mapping between
quantum and classical systems of the form
Z[H] = Tr [exp (BZH]fI>:| o~ /Dx p(x) EBEIHIF[(X)
1

_ [/ DyDx 5(}/)G2x,ny,0)€5 > HIT (x)

T=1
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CONCLUSION

» We considered a quantum-classical duality mapping between
quantum and classical systems of the form

ZH|=Tr [exp (62H1f1>]

1%

/Dx p(x) DY HT (x)

_ [/ Dny 5(:‘/)G,(x,T;y,0)eB > HIT (x)

T=1

» For a system of quantum spinors the dual classical system
consists of scalars with only linear functions I'/(x)’s, but
non-trivial measures of integrations p(x).
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CONCLUSION

» We considered a quantum-classical duality mapping between
quantum and classical systems of the form

ZH|=Tr [exp <BZH1fl>]

1%

/ Dx plx) ¢ T

_ [/ DyDx 5(:‘/)G/(x,T;y,0)EB > HIT (x)

T=1

» For a system of quantum spinors the dual classical system
consists of scalars with only linear functions I'/(x)’s, but
non-trivial measures of integrations p(x).

» Measure is given by relativistic Green’s functions which suggest

a possible mechanism for emergence of a classical space-time
from anti-commutativity of quantum operators or vice versa
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