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MOTIVATIONS INTRODUCTION COMMUTING OPERATORS ANTI-COMMUTING OPERATORS GENERIC SYSTEMS

MOTIVATIONS
I Imaginary time formalism (Felix Bloch and others)

Z[β] = Tr
[
exp

(
βĤ
)]
∼=
∫
ϕ(0)=ϕ(β)

Dϕ e
∫ β

0 dτL[ϕ(τ)]

Note: the inverse temperature parameter β on the quantum side
corresponds to the size of extra dimension β on the classical side

I AdS/CFT correspondence (Juan Maldacena and others)

Z[J] = 〈Ω| exp
(∫

dD+1Ji(x)Ôi(x)

)
|Ω〉 ∼=

∫
φi
∂M=Ji

Dφ e
∫

dD+2xL[φi(x)]

Note: the sources J (i.e. coefficients of operators) on the CFT side
correspond to boundary conditions of fields φi

∂M = Ji on the AdS side
I Quantum-classical duality (arXiv:1903.06083)
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SPINOR OPERATORS
Consider N fermionic subsystems described by operators satisfying:

I Commutation relation if a 6= b

[γ̂
j
a, γ̂

k
b ] = 0 (1)

I Anti-commutation relation

{γ̂j
a, γ̂

k
a} = 2δjk Î (2)

where a, b ∈ {1, ...,N} and j, k ∈ {1, ...,D}.
I Hermitian condition

γ̂
j
a = γ̂

j†
a , (3)

I Tracelessness condition

Tr
[(
γ̂

j1,1
a1 ...γ̂

j1,d1
a1

)(
γ̂

j2,1
a2 ...γ̂

j2,d2
a2

)
...
(
γ̂

jn,1
an ...γ̂

jn,dn
an

)]
= 0 (4)

where 1 ≤ a1 < ... < an ≤ N and 1 ≤ jk,1 < ... < jk,dk ≤ D for all k.
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EXAMPLES
I For D = 2 the spinor operators can be represented by tensor

products of two out of three Pauli matrices (e.g. X̂ and Ŷ),

γ̂1
1 = X̂ ⊗ Î ⊗ ...⊗ Î

γ̂2
1 = Ŷ⊗ Î ⊗ ...⊗ Î

γ̂1
2 = Î ⊗ X̂ ⊗ ...⊗ Î

γ̂2
2 = Î ⊗ Ŷ⊗ ...⊗ Î (5)

...

γ̂1
N = Î ⊗ Î ⊗ ...⊗ X̂

γ̂2
N = Î ⊗ Î ⊗ ...⊗ Ŷ.

I For D = 4 the spinor operators. can be represented by tensor
products of euclidean Dirac matrices

I Although the dimensionality D is kept arbitrary the two cases
with D = 1 and D = 3 will turn out to be dual to simple classical
models on S0 and on S2 configuration/target spaces.
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1 = X̂ ⊗ Î ⊗ ...⊗ Î
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γ̂1
1 = X̂ ⊗ Î ⊗ ...⊗ Î
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N = Î ⊗ Î ⊗ ...⊗ X̂

γ̂2
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HAMILTONIAN
I From the spinor operators we construct a Hamiltonian operator

Ĥq =
∑

j1...jN∈{0,...,D}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N . (6)

where γ̂0
a ≡ Î and all of the components Hj1...jN are real numbers.

I Quantum partition function can be expanded as power series

Zq[H] = Tr
[
exp

(
βĤq

)]
=

∞∑
n=0

βn

n!
Tr

 ∑
j1...jN∈{0,...,D}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N

n
I and each power of Hamiltonian operator into a formal sum

Tr

 ∑
j1...jN∈{0,...,D}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N

n =
∑

A

hA Tr
[
Γ̂A
]

(7)

where hA’s represent products of Hj1...jN ’s components and Γ̂A’s the
corresponding products of the spinor operators.
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COMBINATIONS OF TERMS
I Let σ(A) be a set of all abstract-indices which are equivalent to A

up to different combinations of terms from Hamiltonian.
I Then ∑

A

hAΓ̂A =
∑

A

µ(A)hA : Γ̂A : (8)

where an ordered product of γ̂j
a operators is given by

: Γ̂A := θ(Γ̂A)Γ̂A

for some sign θ(Γ̂A) = ±1 and the “average” sign is

µ(A) =
1

|σ(A)|
∑

B∈σ(A)

θ(Γ̂B) (9)

I Then the trace of powers of Hamiltonian can be written in terms
of ordered operators

Tr

 ∑
j1...jN∈{0,...,D}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N

n =
∑

A

µ(A)hATr
[
: Γ̂A :

]
.
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COMBINATIONS OF TERMS
I

Tr

 ∑
j1...jN∈{0,...,D}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N

n =
∑

A

µ(A)hATr
[
: Γ̂A :

]
I For example, if A represents

(
H02γ̂

2
2
) (

H30γ̂
3
1

)
, then

hA = H02H30

Γ̂A = γ̂2
2 γ̂

3
1

: Γ̂A : = γ̂3
1 γ̂

2
2

θ(Γ̂A) = 1

µ(A) = (1 + 1) /2 = 1,

but if A represents
(
H03γ̂

3
2
) (

H02γ̂
2
2
)
, then

hA = H03H02

Γ̂A = γ̂3
2 γ̂

2
2

: Γ̂A : = γ̂2
2 γ̂

3
2

θ(Γ̂A) = −1

µ(A) = (1− 1)/2 = 0.
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PARTITION FUNCTIONS
I Quantum partition function for N spinors with D = 1

Zq[H] =
∞∑

n=0

βn

n!
Tr

 ∑
j1...jN∈{0,1}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N

n (10)

I Classical partition function for N scalars xa’s,

Zc[H] = N
∫ (∏

a

dxaρ(xa)

)
∞∑

n=0

βn

n!

 ∑
j1...jN∈{0,1}

Hj1...jN xj1
1 ...x

jN
N

n

(11)
where x1

a ≡ xa and x0
a ≡ 1.

I The two systems are dual if

N
∫ (∏

a
dxaρ(xa)

) ∑
j1...jN∈{0,1}

Hj1...jN
x

j1
1 ...x

jN
N


n

= Tr


 ∑

j1...jN∈{0,1}
Hj1...jN

γ̂
j1
1 ...γ̂

jN
N


n

or using the abstract-indices notation

N
∫ (∏

a

dxaρ(xa)

)∑
A

hA XA =
∑

A

µ(A)hATr
[
: Γ̂A :

]
. (12)

where XA is the corresponding products of scalars.
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MEASURE OF INTEGRATION
I Since all operators γ̂1

a ’s commute their products are such that Γ̂A =: Γ̂A :
and, thus, µ(A) = 1 for all A.

I Then by matching individual terms we get

N
∫ (∏

a

dxaρ(xa)

)
XA = Tr

[
: Γ̂A :

]
. (13)

I The ordered product of operators : Γ̂A : either contains
I even number of γ̂1

a operators for every a

⇒ Tr
[
Γ̂A
]

= Tr
[̂
I
]
≡ N (14)

I or ∃ at least one a for which there is an odd number of γ̂1
a ’s

⇒ Tr
[
Γ̂A
]

= 0 (15)

I Then the measure of integration ρ(xa) should be such that all odd
statistical moments vanish and all even statistical moment are the same,∫

(xa)
nρ(xa)dxa =

{
1 if n is even
0 if n is odd.

(16)
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CLASSICAL DUAL
I But this is can be easily achieved with

ρ(xa) =
δ(xa − 1) + δ(xa + 1)

2
(17)

which corresponds to a classical partition function

Zc[H] = N
∑

x1...xN∈{1,−1}

exp

β ∑
j1...jN∈{0,1}

Hj1...jN xj1
1 ...x

jN
N

 . (18)

I We conclude that the quantum system is dual to a classical system

Ĥq =
∑

j1...jN∈{0,1}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N ⇔ Hc =

∑
j1...jN∈{0,1}

Hj1...jN xj1
1 ...x

jN
N

where xa are the classical spinors (or classical scalars on S0 target space)

I Note that the eigenvalues of the quantum Hamiltonian must be

Ex =
∑

j1...jN∈{0,1}

Hj1...jN xj1
1 ...x

jN
N , (19)

where x ∈ {−1, 1}N.
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PARTITION FUNCTIONS
I Quantum partition function for a single spinor (N = 1), but with D > 1

Zq[H] =
∞∑

n=0

βn

n!
Tr

 ∑
j∈{1,...,D}

Hj γ̂
j

n (20)

I Classical partition function for a system of D scalars

Zc[H] = N
∫

dDxρ(x)

∞∑
n=0

βn

n!

 ∑
j∈{1,...,D}

Hj xj

n

. (21)

I The two systems are dual if

N
∫

dDxρ(x)
∑

A

hA XA =
∑

A

µ(A)hATr
[
: Γ̂A :

]
,

N
∫

dDxρ(x)XA = µ(A)Tr
[
: Γ̂A :

]
N
∫

dDxρ(x)
∏

k

(xk)2nk = µ(A)Tr

[∏
k

(γ̂k)2nk

]
∫

dDxρ(x)
∏

k

(xk)2nk = µ(A) (22)
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MULTINOMIALS
I Consider the following two multinomials:

I a sum of commuting scalars raised to some even power(
x1 + x2 + ...+ xD

)2K
=

∑
m1+...+mD=2K

(m1 + ...+ mD)!

(m1)!...(mD)!
(x1)m1 ...(xD)mD

=
∑

m1+...+mD=2K

(
∑

k mk)!∏
k(mk)!

(x1)m1 ...(xD)mD

I a sum of anti-commuting operators raised to the same power(
γ̂1 + γ̂2 + ...+ γ̂D

)2K
=

(
(γ̂1)2 + (γ̂2)2 + ...+ (γ̂D)2

)K

=
∑

n1+...+nD=K

(n1 + ...+ nD)!

(n1)!...(nD)!
(γ̂1)2n1 ...(γ̂D)2nD .

=
∑

n1+...+nD=K

(
∑

k nk)!∏
k(nk)!

(γ̂1)2n1 ...(γ̂D)2nD .

I Separate terms in the expansion of operators represent products of γ̂k’s
applied in different orders (or combinations σ(A)) and we are
interested in products of m1 = 2n1 of γ̂1’s, m2 = 2n2 of γ̂2’s, etc.
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MEASURE OF INTEGRATION
I

µ(A) =
1

|σ(A)|
∑

B∈σ(A)

θ(Γ̂B) =

∏
k(2nk)!

(
∑

k 2nk)!

(
∑

k nk)!∏
k nk!

=

∫
dDx ρ(x)

∏
k

(xk)2nk

where A can represent an arbitrary product of terms with 2nk of γ̂k’s
I The moments generating function of ρ(x)

M(p1, ..., pD) =
∑

n1,...,nD

( ∏
k(2nk)!

(
∑

k 2nk)!

(
∑

k nk)!∏
k nk!

)
p2n1

1 ...p2nD
D∏

k(2nk)!
=

= cosh
(√

p2
1 + ...+ p2

D

)
(23)

I The corresponding characteristic function is

M(ip1, ..., ipD) = cos
(√

p2
1 + ...+ p2

D

)
= cos

√∑
k

p2
k

 (24)

whose inverse Fourier transform is the desired measure of integration

ρ(x) =

∫
dDp

(2π)D cos

√∑
k

p2
k

 exp

(
i
∑

k

xkpk

)
. (25)
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EMERGENT SPACE-TIME
I For D = 1

ρ(x) =

∫
dp
2π

cos
(√

p2

)
exp(ixp)

=
1
2

(δ(x + 1) + δ(x− 1)) , (26)

I For arbitrary D we note that

ϕ(xµ) = ϕ(~x, x0) ≡
∫

dDp
(2π)D cos

x0
√∑

k

(pk)2

 exp

(
i
∑

k

pkxk

)
(27)

solves a D+1-dimensional wave equation,(
(∂0)

2 −
∑

k

(∂k)
2

)
ϕ(xµ) = 0, (28)

with initial conditions

ϕ(~x, 0) = δ(D)(~x) (29)

∂0ϕ(~x, 0) = 0 (30)
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EXTENDED PARTITION FUNCTION
I Solution of the D+1-dimensional wave equation is given by

ϕ(xµ) =

∫
dDy ∂0G(~x, x0;~y, 0)δ(D)(~y) = ∂0G(~x, x0) (31)

where (with a slight abuse of notations)

G(xµ; yµ) = G(~x−~y, x0 − y0) = G(xµ − yµ) = G(~x−~y, x0 − y0)

is the retarded Green’s function of D+1-dim. d’Alembert operator.

I Extended (into “temporal” direction T) partition function is defined as

Zc[H,T] = N
∫

dDxϕ(~x,T) exp

β ∑
j∈{1,...,D}

Hj xj

 (32)

= N
∫

dDy
∫

dDx exp

β ∑
j∈{1,...,D}

Hj xj

 ∂0G(~x,T;~y, 0)δ(D)(~y)

I By construction it satisfies the desired duality condition

Zc[H, 1] = Zq[H] (33)

and also normalization conditions

Zc[H, 0] = N . (34)



MOTIVATIONS INTRODUCTION COMMUTING OPERATORS ANTI-COMMUTING OPERATORS GENERIC SYSTEMS

EXTENDED PARTITION FUNCTION
I Solution of the D+1-dimensional wave equation is given by

ϕ(xµ) =

∫
dDy ∂0G(~x, x0;~y, 0)δ(D)(~y) = ∂0G(~x, x0) (31)

where (with a slight abuse of notations)

G(xµ; yµ) = G(~x−~y, x0 − y0) = G(xµ − yµ) = G(~x−~y, x0 − y0)

is the retarded Green’s function of D+1-dim. d’Alembert operator.
I Extended (into “temporal” direction T) partition function is defined as

Zc[H,T] = N
∫

dDxϕ(~x,T) exp

β ∑
j∈{1,...,D}

Hj xj

 (32)

= N
∫

dDy
∫

dDx exp

β ∑
j∈{1,...,D}

Hj xj

 ∂0G(~x,T;~y, 0)δ(D)(~y)

I By construction it satisfies the desired duality condition

Zc[H, 1] = Zq[H] (33)

and also normalization conditions

Zc[H, 0] = N . (34)



MOTIVATIONS INTRODUCTION COMMUTING OPERATORS ANTI-COMMUTING OPERATORS GENERIC SYSTEMS

EXISTENCE OF DUALITY
I Quantum partition function for N > 1 quantum spinors with D > 1

Zq[H] =
∞∑

n=0

βn

n!
Tr

 ∑
j1...jN∈{0,...,D}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N

n
I Classical partition function for a system of ND classical scalars

Zc[H] = N
∫ (∏

a

dDxa

)
ρ(x)

∞∑
n=0

βn

n!

 ∑
j1...jN∈{0,...,D}

Hj1...jN xj1
1 ...x

jN
N

n

I The two systems are dual if all odd moments vanish and

��N
∫ (∏

a

dDxa

)
ρ(x)XA = ��N

∫ (∏
a

dDxa

)
ρ(x)

∏
a,k

(
xk

a

)2na
k

= ����Tr
[
: Γ̂A :

]
µ(A) (35)

I Then the measure only exists if

: Γ̂A :=: Γ̂B : ⇒ µ(A) = µ(B). (36)

i.e. even if A and B are not in the same combination class, σ(A) 6= σ(B),
but the corresponding products of operators are the same, : Γ̂A :=: Γ̂B :,
the statistical moments must also be the same, µ(A) = µ(B).
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SEPARABLE MEASURE
I Consider a Hamiltonian with components which can be expressed as

Hj1...jN =
∑

k1...kN∈{0,1}

Hk1...kNη
k1
1,j1
...η

kN
N,jN

(37)

where we assume that H0...0 = 0 and

η0
a,j = δ0j (38)

ηk
a,0 = δk0 (39)

I Then the Hamiltonian operator

Ĥq =
∑

j1...jN∈{0,...,D}

Hj1...jN γ̂
j1
1 ...γ̂

jN
N (40)

=
∑

k1...kN∈{0,1}

Hk1...kN η̂
k1
1 ...η̂

kN
N

where
η̂a = η̂1

a =
∑

j∈{0,...,D}

η1
a,jγ̂

j
a =

∑
j∈{1,...,D}

η1
a,jγ̂

j
a (41)

and
η̂0

a =
∑

j∈{0,...,D}

η0
a,jγ̂

j
a =

∑
j∈{0,...,D}

δ0jγ̂
j
a = γ̂0

a = Î. (42)
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DUAL SYSTEM
I Since the combined operators satisfy a commutation relation

[η̂a, η̂b] = 0 (43)

we can essentially follow the above analysis with

Zc[H] = N
∫ (∏

a

dDxaρ(xa)

)
∞∑

n=0

βn

n!

 ∑
j1...jN∈{0,...,D}

Hj1...jN xj1
1 ...x

jN
N

n

= N
∫ (∏

a

dDxaρ(xa)

)
∞∑

n=0

βn

n!

 ∑
k1...kN∈{0,1}

Hk1...kNχ
k1
1 ...χ

kN
N

n

where
χa = χ1

a =
∑

j∈{1,...,D}

η1
a,jx

j
a χ0

a = 1

I Result:

Zc[H,T] = N
∫ (∏

a

dDxa ∂0G(~xa,Ta)

)
exp

β ∑
j1...jN∈{0,1}

Hj1...jN xj1
1 ...x

jN
N

 ,
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EXAMPLES

I Note that the measure of integration is already normalized,∫ (∏
a

dDxa ∂0G(~xa,Ta)

)
= 1, (44)

but it can be interpreted as probability only if ∂0G(~xa,Ta) ≥ 0.
I For example, when D = 1

Zc[H,T] = N
∫ ∏

a

(
dxa

2

(
δ(x1

a − Ta) + δ(x1
a + Ta)

))
exp (βHc) , (45)

in agreement with pervious results, or when D = 3

Zc[H,T] = N
∫ ∏

a

(
d3xa

4πT2
a
δ

(∑
k

(
xk

a

)2
− T2

a

))
exp (βHc) . (46)

I Of course there is no reason to expect that the measure will remain
positive for more general quantum systems and then the dual system
defined in a similar manner would not be classical per se.
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CONCLUSION

I We considered a quantum-classical duality mapping between
quantum and classical systems of the form

Z[H] = Tr

[
exp

(
β
∑

I

HIΓ̂
I

)]
∼=

∫
Dx ρ(x) eβ

∑
I HIΓ

I(x)

=

[∫
DyDx δ(y)G′(x,T;y,0)eβ

∑
I HIΓ

I(x)
]

T=1

I For a system of quantum spinors the dual classical system
consists of scalars with only linear functions ΓI(x)’s, but
non-trivial measures of integrations ρ(x).

I Measure is given by relativistic Green’s functions which suggest
a possible mechanism for emergence of a classical space-time
from anti-commutativity of quantum operators or vice versa
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