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It is widely known that there is no general theory for integration of
nonlinear partial di�erential equations (PDEs). Nevertheless, many
special cases of complete integration or �nding particular solutions are
related to appropriate changes of variables.

Nondegenerate point transformations that leave a di�erential equation
invariant and form a connected Lie group are called Lie symmetries of
this equation. Transformations of this kind are ones which are mostly
used.

This places the transformation methods among the most powerful
analytic tools currently available in the study of nonlinear PDEs.
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The presence of nontrivial symmetry properties is one of the
distinctive features which di�er equations describing natural
phenomena from other possible ones

All the basic equations of mathematical physics, i.e. the equations of
Newton, Laplace, d'Alembert, Euler-Lagrange, Lame,
Hamilton-Jacobi, Maxwell, Schr�odinger etc., have nontrivial
symmetry properties.
It means that manifolds of their solutions are invariant with respect
to multi-parameter group of continuous transformations (Lie group of
transformations) with large number of parameters.
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The requirement of invariance of an equation under a group enables
us in some cases to select this equation from a wide set of other
admissible ones.

For example, there is the only one system of Poincar�e-invariant
�rst-order partial di�erential equations of for two real vectors E and
H, and this is the system of Maxwell equations.

Group classi�cation problem of di�erential equations consists in the
speci�cation of non-equivalent cases of such equations which possess
the extensions of Lie symmetries.
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The systematic study of transformational properties of classes of
nonlinear PDEs was initiated in 1991 by Kingston and Sophocleous.
These authors later named the transformations related two particular
equations in a class of PDEs form-preserving transformations, because
such transformations preserve the form of the equation in a class and
change only its arbitrary elements.
Only a year later in 1992 Gazeau and Winternitz started to
investigate such transformations in classes of PDEs calling them
allowed transformations.
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Rigorous de�nitions and developed theory on the subject was
proposed later by Popovych.
As formalization of notion of form-preserving (allowed)
transformations he suggested the term admissible transformation.
In brief, an admissible transformation is a triple consisting of two
�xed equations from a class and a transformation that links these
equations.
The set of admissible transformations considered with the standard
operation of composition of transformations is also called the
equivalence groupoid.
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Equivalence group

There exist several kinds of equivalence groups depending on
restrictions that are imposed on the transformations. The usual
equivalence group of the class L|S consists of the nondegenerate point
transformations in the space of variables and arbitrary elements,
which preserve the whole class L|S and are projectable on the variable
space, i.e., the transformation components corresponding to
independent and dependent variables do not depend on arbitrary
elements.
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Generalized extended equivalence group

Restrictions on transformations can be weakened in two directions.
We admit the transformations of the variables t , x and u can depend
on arbitrary elements
(the pre�x �generalized� [Meleshko, 1994]).

The explicit form of the new arbitrary elements (f̃ , g̃, h̃, ñ, m̃) is
determined via (t , x ,u, f ,g,h,n,m) in some non-�xed (possibly,
nonlocal) way
(the pre�x �extended� [Ivanova&Popovych&Sophocleous, 2005]).
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Normalization property

The class L|S is called normalized in the usual (resp. generalized,
resp. extended, resp. generalized extended) sense if the equivalence
groupoid of this class is induced by transformations from its
equivalence group of the corresponding type.

Classes which are most convenient for investigation are those
normalized in the usual sense.

Class normalized in any sense is always better than one that is not
normalized.
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Consider the general class of second-order evolution equations,

ut = H(t , x ,u,ux ,uxx), Huxx 6= 0.

Any point transformation T relating two �xed equations ut = H and
ũt̃ = H̃ from this class has the form

t̃ = T (t), x̃ = X (t , x ,u), ũ = U(t , x ,u) with Tt(XxUu − XuUx) 6= 0.

ũt̃ =
DtUDxX − DxUDtX

TtDxX
, ũx̃ =

DxU
DxX

, ũx̃ x̃ =
1

DxX
Dx

(
DxU
DxX

)
,

where Dt = ∂t + ut∂u + utt∂ut + utx∂ux + . . . and
Dx = ∂x + ux∂u + utx∂ut + uxx∂ux + . . .
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Proposition 1.

The class ut = H(t , x ,u,ux ,uxx), Huxx 6= 0, is normalized in the
usual sense. Its equivalence group is formed by the transformations

t̃ = T (t), x̃ = X (t , x ,u), ũ = U(t , x ,u), Tt(XxUu − XuUx) 6= 0,

H̃ =
XxUu − XuUx

TtDxX
H +

UtDxX − XtDxU
TtDxX

.

The subclass of the above class singled out by the condition
Huxx uxx = 0 has the same equivalence transformation components for
variables.
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Proposition 2.

The class of quasilinear second-order evolution equations,

ut = G(t , x ,u,ux)uxx + F (t , x ,u,ux), G 6= 0,

is normalized in the usual sense. Its equivalence group is formed by
the transformations

t̃ = T (t), x̃ = X (t , x ,u), ũ = U(t , x ,u), Tt(XxUu − XuUx) 6= 0,

G̃ =
(DxX )2

Tt
G, F̃ =

XxUu − XuUx

TtDxX
F +

UtDxX − XtDxU
TtDxX

+

(Xxx + 2Xxuux + Xuuu2
x )DxU − (Uxx + 2Uxuux + Uuuu2

x )DxX
TtDxX

G.
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Proposition 3.

The class

ut = G(t , x ,u)uxx + F (t , x ,u,ux), G 6= 0,

is normalized in the usual sense. Its equivalence group comprises the
transformations

t̃ = T (t), x̃ = X (t , x), ũ = U(t , x ,u), G̃ =
X 2

x

Tt
G,

F̃ =
Uu

Tt
F +

UtXx − XtDxU
TtXx

+
XxxDxU − (Uxx + 2Uxuux + Uuuu2

x )Xx

TtXx
G,

where TtXxUu 6= 0.
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Proposition 4.

The class ut = G(t , x ,u)uxx +
∑n

k=0 F k (t , x ,u)uk
x , n ≥ 2, G 6= 0, is

normalized in the usual sense. Its equivalence group consists of the

transformations t̃ = T (t), x̃ = X (t , x), ũ = U(t , x ,u), G̃ =
X 2

x

Tt
G and

the transformation components for the arbitrary elements F k ,
k = 0, . . . ,n, are found as solutions of the algebraic system resulting
from the splitting w.r.t. di�erent powers of ux of the equation

n∑
k=0

F̃ k
(

Uu

Xx
ux +

Ux

Xx

)k

=
1

TtXx

[
XxUu

n∑
k=0

F k uk
x + UtXx − XtDxU +(

XxxDxU − (Uxx + 2Uxuux + Uuuu2
x )Xx

)
G
]
.
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Proposition 5.

The class
ut = G(t , x ,u)uxx + F 2(t , x ,u)u2

x + F 1(t , x ,u)ux + F 0(t , x ,u), G 6= 0,
is normalized in the usual sense. Its equivalence group consists of the

transformations t̃ = T (t), x̃ = X (t , x), ũ = U(t , x ,u), G̃ =
X 2

x

Tt
G,

F̃ 2 =
X 2

x

TtU2
u

(
UuF 2 − UuuG

)
, F̃ 1 =

1
TtUu

(
2

XxUx

Uu
(UuuG − UuF 2) + XxUuF 1 − XtUu + (XxxUu − 2UxuXx)G

)
,

F̃ 0 =
1
Tt

[
U2

x

Uu
F 2 −UxF 1 +UuF 0 +Ut +

(
2

Ux

Uu
Uxu − Uxx −

U2
x

U2
u

Uuu

)
G
]
,

where TtXxUu 6= 0.
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Proposition 6.

The class

ut = G(t , x ,u)uxx + F 1(t , x ,u)ux + F 0(t , x ,u), G 6= 0,

is normalized in the usual sense. Its equivalence group comprises the
transformations

t̃ = T (t), x̃ = X (t , x), ũ = U1(t , x)u + U0(t , x), TtXxU1 6= 0,

G̃ =
X 2

x

Tt
G, F̃ 1 =

1
TtU1

(
XxU1F 1 − XtU1 + (XxxU1 − 2U1

x Xx)G
)
,

F̃ 0 =
1
Tt

[
U1F 0 − (U1

x u + U0
x )F

1 + U1
t u + U0

t +

+

(
2

U1
x

U1 (U
1
x u + U0

x )− U1
xxu − U0

xx

)
G
]
.
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Consider one more subclass of the class

ut = G(t , x ,u)uxx + F 2(t , x ,u)u2
x + F 1(t , x ,u)ux + F 0(t , x ,u), (1)

for which the condition Uuu = 0 holds for admissible transformations.
This is the subclass singled out by the condition F 2 = Gu,

ut = (G(t , x ,u)ux)x + K (t , x ,u)ux + P(t , x ,u), G 6= 0.

This class can be written in the form
ut = Guxx + Guu2

x + (Gx + K )ux + P, where connections between
arbitrary elements of the latter class and class (1) are given by the
formulas F 2 = Gu, F 1 = Gx + K , F 0 = P.
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Proposition 7.

The class ut = (G(t , x ,u)ux)x + K (t , x ,u)ux + P(t , x ,u) is normalized
in the usual sense. Its equivalence group is formed by the
transformations

t̃ = T (t), x̃ = X (t , x), ũ = U1(t , x)u + U0(t , x), TtXxU1 6= 0,

G̃ =
X 2

x

Tt
G, K̃ =

Xx

Tt

[
K −

(
Xxx

Xx
+ 2

U1
x

U1

)
G − 2(U1

x u + U0
x )

Gu

U1 −
Xt

Xx

]
,

P̃ =
1
Tt

[
U1P +

(U1
x u + U0

x )
2

U1 Gu − (U1
x u + U0

x )(Gx + K ) + U1
t u + U0

t +(
2

U1
x

U1 (U
1
x u + U0

x )− U1
xxu − U0

xx

)
G
]
.
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The class
ut = (G(t , x ,u)ux)x + P(t , x ,u), G 6= 0, (2)

is not normalized anymore.
It's equivalence group is comprised of the transformations

t̃ = T (t), x̃ = δ1x + δ2, ũ = U1(t)u + U0(t), TtU1δ1 6= 0,

G̃ =
δ2

1
Tt

G, P̃ =
1
Tt

(
U1P + U1

t u + U0
t
)
.

If G does not satisfy the equation of the form

(au + b)Gu + c G + d = 0,

then class (2) is normalized.
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We also consider the class

S(t , x)ut = (G(t , x ,u)ux)x + K (t , x ,u)ux + P(t , x ,u), SG 6= 0.

In particular, the classes of variable-coe�cient di�usion�reaction
equations f (x)ut = (g(x)A(u)ux)x + h(x)B(u) and
di�usion�convection equations f (x)ut = (g(x)A(u)ux)x + h(x)B(u)ux
are subclasses of this class.
The coe�cient S(t , x) can be gauged to one by the family of point
transformation

t̃ = t , x̃ =

∫ x

x0

S(t , y) dy , ũ = u.

Nevertheless, we will consider this class separately since its
transformational properties become more complicated.
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Proposition 8. Any point transformation between two equations from
the class

S(t , x)ut = (G(t , x ,u)ux)x + K (t , x ,u)ux + P(t , x ,u)

has the form

t̃ = T (t), x̃ = X (t , x), ũ = U1(t , x)u + U0(t , x), TtXxU1 6= 0.

Then arbitrary elements are related via the formulas
G̃
S̃

=
X 2

x

Tt

G
S ,

K̃ + G̃x̃

S̃
=

Xx

TtS

[
K + Gx +

(
Xxx

Xx
− 2

U1
x

U1

)
G − 2(U1

x u + U0
x )

Gu

U1 −
Xt

Xx
S
]
,

P̃
S̃

=
1

TtS

[
U1P +

(U1
x u + U0

x )
2

U1 Gu − (U1
x u + U0

x )(K + Gx) + (U1
t u + U0

t )S +(
2

U1
x

U1 (U
1
x u + U0

x )− U1
xxu − U0

xx

)
G
]
.
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It is obvious that transformation properties of the class

S(t , x)ut = (G(t , x ,u)ux)x + K (t , x ,u)ux + P(t , x ,u), SG 6= 0.

become more complicated in comparison with those of its subclass
with S = 1. Transformations are de�ned only for fractions of
arbitrary elements. It is explained by the fact that this class admits
peculiar gauge equivalence transformation (an equivalence
transformation for which independent and dependent variables do not
transform but only arbitrary elements). This is the transformation

S̃ = Z (t , x ,S), G̃ =
G
S

Z , K̃ =
K
S

Z −G
(

Z
S

)
x
, P̃ =

P
S

Z ,

where Z is an arbitrary smooth function of its variables with ZS 6= 0.
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Proposition 9.
The class S(t , x)ut = (G(t , x ,u)ux)x + K (t , x ,u)ux + P(t , x ,u) is
normalized. It's equivalence group comprises the transformations

t̃ = T (t), x̃ = X (t , x), ũ = U1(t , x)u + U0(t , x), TtXxU1 6= 0,

S̃ = Z (t , x ,S), G̃ =
X 2

x

Tt

G
S

Z ,

K̃ =
XxZ
TtS

[
K −

(
Xxx

Xx
+ 2

U1
x

U1

)
G − 2(U1

x u + U0
x )

Gu

U1 −
Xt

Xx
S
]
− Xx

Tt
G
(

Z
S

)
x
,

P̃ =
Z

TtS

[
U1P +

(U1
x u + U0

x )
2

U1 Gu − (U1
x u + U0

x )(K + Gx) + (U1
t u + U0

t )S +(
2

U1
x

U1 (U
1
x u + U0

x )− U1
xxu − U0

xx

)
G
]
.
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Vaneeva O.O. et al. (2014) Physica Scripta, 89 (3),
038003.

The class

ut = F (t)un + G(t , x ,u0,u1, . . . ,un−1), F 6= 0, Gui un−1 = 0,

where i = 1, . . . ,n − 1, n > 2, is normalized.
Its usual equivalence group consists of the transformations

t̃ = T (t), x̃ = X 1(t)x+X 0(t), ũ = U1(t , x)u+U0(t , x), F̃ =
(X 1)n

Tt
F ,

G̃ =
U1

Tt
G −

(
n−1∑
k=0

(
n
k

)
U1

n−k uk + U0
n

)
F
Tt

+
U1

t

Tt
u+

+
U0

t

Tt
−

X 1
t x + X 0

t

TtX 1 (U1ux + U1
x u + U0

x ),

where TtX 1U1 6= 0.
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Generalized Kawahara equations
Joint work with O. Magda and A. Zhalij

We study generalized Kawahara equations

ut + α(t)f (u)ux + β(t)uxxx + σ(t)uxxxxx = 0, (3)

from the Lie symmetry point of view. Here f , α, β and σ are smooth
nonvanishing functions of their variables.
The class (3) is not normalized but it can be partitioned into two
normalized subclasses which are singled out by the conditions, fuu 6= 0
and fuu = 0, respectively.
The case f (u) = un, n 6= 0 is investigated exhaustively in
[O. Kuriksha, S. Po�sta, O. Vaneeva, J. Phys. A: Math. Theor. 47
(2014) 045201].
Other related works:
[M.L. Gandarias, M. Rosa, E. Recio, S.C. Anco, AIP Conference
Proceedings 1836 (2017), 020072].
[J. Va�si�cek, arXiv:1810.02863].
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Generalized Kawahara equations

Theorem 1.

The usual equivalence group G∼ of class

ut + α(t)f (u)ux + β(t)uxxx + σ(t)uxxxxx = 0

consists of the transformations

t̃ = T (t), x̃ = δ1x + δ2

∫
a(t)dt + δ3, ũ = δ4u + δ5,

f̃ = δ0

(
f +

δ2

δ1

)
, α̃(̃t) =

δ1

δ0Tt
α(t), β̃(̃t) =

δ3
1

Tt
β(t), σ̃(̃t) =

δ5
1

Tt
σ(t),

where δj , j = 0,1,2,3,4,5 are arbitrary constants with δ0δ1δ3 6= 0, T
is an arbitrary smooth function with Tt 6= 0.
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Table 1. The group classi�cation of the

class ut + f (u)ux + β(t)uxxx + σ(t)uxxxxx = 0, βσ 6= 0, f 6= un.

f (u) β(t) σ(t) Basis of Amax

0 ∀ ∀ ∀ ∂x

1 ∀ λt2 δt4 ∂x , t∂t + x∂x

2 ∀ λ δ ∂x , ∂t

3 eu λtρ δt
5ρ+2

3 ∂x , 3t∂t + (ρ+ 1)x∂x + (ρ− 2)∂u

4 eu λet δe
5
3 t ∂x , 3∂t + x∂x + ∂u

5 ln u ∀ ∀ ∂x , t∂x + u∂u

6 ln u λ δ ∂x , ∂t , t∂x + u∂u
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ut + unux + β(t)uxxx + σ(t)uxxxxx = 0

β(t) σ(t) Basis of Amax

n 6= 1
∀ ∀ ∂x

λtρ δt
5ρ+2

3 ∂x ,
3nt∂t + (ρ+ 1)nx∂x + (ρ− 2)u∂u

λet δe
5
3 t ∂x , 3n∂t + nx∂x + u∂u

λ δ ∂x , ∂t

n = 1
∀ ∀ ∂x , t∂x + ∂u

λtρ δt
5ρ+2

3 ∂x , t∂x + ∂u,
3t∂t + (ρ+ 1)x∂x + (ρ− 2)u∂u

λet δe
5
3 t ∂x , t∂x + ∂u, 3∂t + x∂x + u∂u

λ δ ∂x , t∂x + ∂u, ∂t

λ(t2 + 1)
1
2 e3ν arctan t δ(t2 + 1)

3
2 e5ν arctan t ∂x , t∂x + ∂u, (t2 + 1)∂t+

(t + ν)x∂x + ((ν − t)u + x)∂u
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Conclusions

I Once it is proved that some class is normalized the �nding of the
equivalence groupoid for its subclasses becomes essentially
simpler.

I The study of transformational and normalization properties of
classes of PDEs can simplify a lot the further study of their
symmetry properties. For classes that are not normalized the
method of partition of a class into normalized subclasses works
very good.

I Equivalence groupoid can be used in many problems related to
classes of DEs: �nding exact solutions and conservation laws,
study of the integrability and more.
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Thank you for your attention!
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