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Sasaki manifold and Sasaki potential (1)

A (2n + 1)-dimensional manifold M is a contact manifold if
there exists a 1-form η (called a contact 1-form) on M such that

η ∧ (dη)n−1 6= 0 .

Associated with a contact form η there exists a unique vector
field ξ called the Reeb vector field defined by the contractions
(interior products):

i(ξ)η = 1 ,

i(ξ)dη = 0 .



Sasaki manifold and Sasaki potential (2)
A simple and direct definition of the Sasakian structures is the
following:

A compact Riemannian manifold (M,g) is Sasakian if and only
if its metric cone (C(M) ∼= R+ ×M , ḡ = dr2 + r2 g) is Kähler.

Here r ∈ (0,∞) may be considered as a coordinate on the
positive real line R+. The Sasakian manifold (M,g) is naturally
isometrically embedded into the metric cone via the inclusion
M = {r = 1} = {1} ×M ⊂ C(M).

Let us denote by Lξ the line subbundle generated by ξ and let
D = Kerη be the contact subbundle in TM. Then we have the
following decomposition of the tangent bundle TM of M:

TM = D ⊕ Lξ.



Sasaki manifold and Sasaki potential (3)
M can be endowed with a contact structure (Φ, ξ, η), where the
endomorphism Φ of the tangent bundle TM is

Φ(X ) = ∇X ξ ,

for any smooth vector field X on M.
One gets a global 2-form ΩT on M coming from the contact
1-form η, namely

ΩT =
1
2

dη.

We have that (D,Φ|D,dη) gives M a transverse Kähler
structure with Kähler form ΩT defined above and transverse
metric gT given by

gT (X ,Y ) = dη(X ,ΦY ),

and related to the Sasaki metric g on M by

g = gT + η ⊗ η.



Sasaki manifold and Sasaki potential (4)

We recall that a Riemannian manifold (M,g) that satisfies the
Einstein equation

Ricg = λg ,

for a real constant λ (called Einstein constant), where Ricg
stands for the Ricci tensor of the metric g, is said to be an
Einstein manifold. Moreover, if the Einstein constant is zero,
then the Riemannian space (M,g) is called a Ricci-flat
manifold. A Sasaki manifold is said to be a Sasaki-Einstein
space if the cone manifold C(M) of M is Kähler Ricci-flat
(Calabi-Yau). It is clear that a Sasaki-Einstein space is a
Riemannian manifold that is both a Sasaki manifold and an
Einstein space.
Notice that the transverse metric associated with a
Sasaki-Einstein space is Einstein.



Sasaki manifold and Sasaki potential (5)

Every (2n + 1)-dimensional Sasakian manifold is locally
generated by a free real-valued function K of 2n variables,
called the Sasaki potential, while every locally Sasaki-Einstein
space of dimension 2n + 1 is generated by a locally
Kähler-Einstein space of dimension 2n.

If {Uα} is a foliation chart on M with Uα = I×Vα (where I ⊂ R is
an open interval and Vα ⊂ Cn), and (x , z1, . . . , zn) are the local
holomorphic coordinates on Uα (with Reeb vector field ξ = ∂

∂x
and z1, . . . , zn are the local holomorphic coordinates on Vα).



Sasaki manifold and Sasaki potential (6)
The Sasaki potential [M. Godliński, W. Kopczyński, P.
Nurowski, Class. Quantum Grav. 17 (2000) L105-L115]
K on Uα is chosen in such a way that ξ(K ) = 0 and

η = dx + i
n∑

j=1

(K,jdz j)− i
n∑

j̄=1

(K,̄jdz̄ j),

dη = −2i
n∑

j,k̄=1

K,j k̄dz j ∧ dz̄k ,

g = η2 + 2
n∑

j,k̄=1

K,j k̄dz jdz̄k

φ = −i
n∑

j=1

[(∂j − iK,j∂x )⊗ dz j ] + i
n∑

j̄=1

(∂̄j + iK,̄j∂x )⊗ dz̄ j ].



Sasaki manifold and Sasaki potential (7)

We recall that a r -form α on M is called basic if

ιξα = 0 , Lξ α = 0 ,

where Lξ is the Lie derivative with respect to the vector field ξ.
In particular a function ϕ is basic if and only if ξ(ϕ) = 0. In the
system of coordinates (x , z1, . . . , zn) given above, a basic
r -form of type (p,q) , r = p + q has the form

α = αi1···ip j̄1···̄jq dz i1 ∧ · · · ∧ dz ip ∧ dz̄ j1 ∧ · · · ∧ dz̄ jq ,

where αi1···ip j̄1···̄jq does not depend on x .



Sasaki-Ricci flow (1)
Let M be a smooth manifold equipped with a Sasakian
structure (g, η, ξ,Φ). Suppose that we deform the contact form
η with a basic function ϕ as follows:

η̃ = η + dc
Bϕ,

where dc
B = i

2(∂̄B − ∂B), dB = ∂B + ∂̄B and ∂̄B, ∂B denote the
basic Dolbeault operators.
The above deformation implies that other fundamental tensors
are also modified:

Φ̃ = Φ− (ξ ⊗ (dc
Bϕ)) ◦ Φ ,

g̃ = d η̃ ◦ (1l⊗ Φ̃) + η̃ ⊗ η̃ ,

as well as the transverse form:

d η̃ = dη + dBdc
Bϕ.

It is known that the quadruplet (g̃, η̃, ξ, Φ̃) remains a Sasakian
structure on M.



Sasaki-Ricci flow (2)

Let (g(t), η(t), ξ,Φ(t)) be a flow having initial data
(g(0), η(0), ξ,Φ(0)) = (g, η, ξ,Φ), generated by a basic function
ϕ(t) as above and suppose that the basic first Chern class is
positive, i.e. c1

B > 0. Then the Sasaki-Ricci flow, also known
as transverse Kähler-Ricci flow [K. Smoczyk, G. Wang, Y.
Zhang, Intern. J. Math. 21 (2010), 951-969; A. Futaki, H. Ono,
G. Wang, J. Diff. Geom. 83 (2009), 585-635] is defined by

∂gT

∂t
= −RicT

g(t) + (2n + 2)gT (t),

where RicT is the transverse Ricci curvature.



Sasaki-Ricci flow (3)

Considering a deformation of the Sasaki structure with a basic
function ϕ, in local coordinates the Sasaki-Ricci flow can be
expressed as a parabolic Monge-Ampère equation

∂ϕ

∂t
= log det(gT

jk̄ + ϕj k̄ )− log(detgT
jk̄ ) + (2n + 2)ϕ .



Local coordinates on T 1,1 (1)

T 1,1 = S2 × S3 is one of the most renowned example of
homogeneous Sasaki-Einstein space in dimension five, the
standard metric on this manifold being

ds2(T 1,1) =
1
6

(dθ2
1 + sin2 θ1dφ2

1 + dθ2
2 + sin2 θ2dφ2

2)+

1
9

(dψ + cos θ1dφ1 + cos θ2dφ2)2 ,

where θi ∈ [0, π), φi ∈ [0,2π), i = 1,2 and ψ ∈ [0,4π).



Local coordinates on T 1,1 (2)

We consider on T 1,1 a patch of coordinates (ψ,w1,w2), where
the real coordinates ψ is for the Reeb flow of the Sasaki
structure, with

ξ =
1
3
∂

∂ψ
.

(z1, z2) are transverse complex coordinates addressing the
transverse Kähler structure. As on T 1,1 the transverse structure
are locally isomorphic to a product S2 × S2, we choose

z1 = tan
θ1

2
eiφ1 ,

z2 = tan
θ2

2
eiφ2 .



Local coordinates on T 1,1 (3)

We consider the Sasaki potential

K =
1
3

∑
j

log(1 + z j z̄ j)− 1
6

∑
j

log(z j z̄ j).

For the contact form η we get

η =
1
3

dψ + i
∑

j

∂K
∂z j dz j − i

∑
j̄

∂K
∂z̄ j dz̄ j

=
1
3

dψ +
1
3

∑
j

cos θjφj .



Transverse Kähler-Ricci flow on T 1,1 (1)
In the case of the space T 1,1 the Ricci flow equation has the
form:

dϕ
dt

= log (ϕ11̄ϕ22̄ − ϕ12̄ϕ21̄

+ cos4 θ1

2
ϕ22̄ + cos4 θ2

2
ϕ11̄ + cos4 θ1

2
cos4 θ2

2

)
− log

(
cos4 θ1

2
cos4 θ2

2

)
+ 6ϕ .

Evaluating the derivatives of the basic ϕ we get:

ϕj j̄ =
∂2ϕ

∂z j∂z̄ j

= cos4 θj

2
∂2ϕ

∂θ2
j

+
1
4

1

tan2 θj
2

∂2ϕ

∂φ2
j

+
1
2

cos2 θj

2
1

tan θj
2

cos θj
∂ϕ

∂θj
,

with 1 ≤ j ≤ 2



Transverse Kähler-Ricci flow on T 1,1 (2)

ϕj l̄ =
∂2φ

∂z j∂z̄ l = cos2 θj

2
cos2 θl

2
ei(φl−φj )

·
(

∂2ϕ

∂θj∂θl
+

1
sin θj sin θl

∂2ϕ

∂φj∂φl
− i

sin θj

∂2ϕ

∂θl∂φj
+

i
sin θl

∂2ϕ

∂φl∂θj

)
for i 6= j .



Transverse Kähler-Ricci flow on T 1,1 (3)

We search after particular solutions of the transverse
Kähler-Ricci flow equation. We factorize the dependences on
the variable t and angle coordinates as follows:

ϕ(t , θ1, θ2, φ1, φ2) = f (t) · g(θ1, θ2, φ1, φ2) .

The Ricci flow equation is still quite involved and searching for
some explicit solutions we shall assume that the dependence
on the angles (θ1, φ1) , (θ2, φ2) of the function g separates:

g(θ1, θ2, φ1, φ2) = g1(θ1, φ1) + g2(θ2, φ2) .

With this simplifying assumption the mixed derivatives ϕ12̄ and
ϕ21̄ vanish.



Transverse Kähler-Ricci flow on T 1,1 (4)
Moreover we look for solutions satisfying the following
additional constraints:

∂2ϕ

∂θ2
1

+
1

sin2 θ1

∂2ϕ

∂φ2
1

+
1

tan θ1

∂ϕ

∂θ1
= c1f (t) ,

∂2ϕ

∂θ2
2

+
1

sin2 θ2

∂2ϕ

∂φ2
2

+
1

tan θ2

∂ϕ

∂θ2
= c2f (t) ,

where cj are some arbitrary real constant.

With these assumptions we get that

ϕ11̄ = cos4 θ1

2
c1 f (t) ,

ϕ22̄ = cos4 θ2

2
c2 f (t)



Transverse Kähler-Ricci flow on T 1,1 (5)

Ricci flow equation reduces to an ordinary differential equation
for f (t):

df (t)
dt
· g(θ1, θ2, φ1, φ2) = log

[
f 2(t)(c1c2) + f (t)(c1 + c2) + 1

]
+ 6f (t) · g(θ1, θ2, φ1, φ2) .

We search for a solution of the form:

g(θ1, θ2, φ1, φ2) =
1
2

d1φ
2
1 + h1(θ1) +

1
2

d2φ
2
2 + h2(θ2) ,

where dj are some arbitrary real constants.



Transverse Kähler-Ricci flow on T 1,1 (6)

Functions hj are

h1(θ1) = e1 log u1 −
d1

2
(log u1)2 − c1 log sin θ1 ,

h2(θ2) = e2 log u2 −
d2

2
(log u2)2 − c2 log sin θ2 ,

where
uj =

sin θj

1 + cos θj
, j = 1,2 .

and dj ,ej are other arbitrary real constants.



Transverse Kähler-Ricci flow on T 1,1 (7)
The simplest solution is that involving only the constants ej 6= 0
and the rest of the constants is zero. In that case we can state
the following proposition:

Proposition
Any metric of the form with arbitrary real constants ej , j = 1,2

g̃ =
1
9

dψ +
∑

j

(cos θj +
ej

2
)dφj

2

+
1
6

∑
j

(
dθ2

j + sin2 θjdφ2
j

)
represents a deformation of the canonical metric on T 1,1. The
deformed contact structure remains Sasaki-Einstein with the
contact form

η̃ = η +
1
6

∑
j

ej dφj =
1
3

dψ +
1
3

∑
j

cos θjdφj +
1
6

∑
j

ej dφj .



Transverse Kähler-Ricci flow on T 1,1 (8)

A more involved deformation can be obtain assuming that the
constants dj 6= 0. In this case we get the following deformation
of the Sasaki structure:

Proposition
Any metric of the form with arbitrary real constants dj , j = 1,2

g̃ =
1
9

dψ +
∑

j

(
cos θj +

dj

2
log tan

θj

2

)
dφj

+
1
2

∑
j

dj
φj

sin θj
dθj

2

+
1
6

∑
j

(
dθ2

j + sin2 θjdφ2
j

)
represents a deformation of the canonical metric on T 1,1.



Transverse Kähler-Ricci flow on T 1,1 (9)

The deformed contact structure remains Sasaki-Einstein with
the contact form

η̃ =
1
3

dψ +
1
3

∑
j

cos θjdφj +
1
2

∑
j

dj
φj

sin θj
dθj

+
1
2

∑
j

dj log tan
θj

2
dφj .



Transverse Kähler-Ricci flow on T 1,1 (10)

Let us remark that in both deformations considered above the
transverse metric remains unaltered. For c1 = c2 = 0 the
function f (t) satisfying the Ricci flow equation has a very simple
solution with the initial condition f (0) = 0:

f (t) = e6t − 1 .



Transverse Kähler-Ricci flow on T 1,1 (11)

To summarize we have the following outcome :

Corollary
The families of potential basic functions

ϕt = (e6t − 1)
∑

j

ej log z j z̄ j ,

and

ϕt = (e6t − 1)
[∑

j

dj log2 z i +
1
2

∑
j

dj log z j log z j z̄ j

−1
4

∑
j

dj log2 z j z̄ j
]
,

stand as solutions of the transverse Kähler-Ricci flow equation
on the manifold T 1,1.



Transverse Kähler-Ricci flow on T 1,1 (12)
Finally, let us consider deformations of the Sasaki structures
involving the constants cj 6= 0. In this case we have a
modification of the transverse metric as follows:

Proposition
The deformed contact structure with the contact form

η̃ = η +
∑

j

cj cos θjdφj =
1
3
(
dψ + (1− 3cj) cos θjdφj

)
.

remains Sasaki with the metric

g̃ =
1
9
[
dψ +

∑
j

(1− 3cj) cos θjdφj
]2

+
1
6

∑
j

(1 + 3cj)
(
dθ2

j + sin2 θjdφ2
j
)
.



Outlook

I Killing forms on deformed manifolds under Sasaki-Ricci
flow

I Integrals of motion on deformed Sasaki-Einstein spaces
I Sasaki-Ricci flow on Y p,q

I Sasaki-Ricci flow on 3-Sasakian manifolds



Appendix (1)

∂f =
n∑

j=1

∂f
∂z j dz j ,

∂̄f =
n∑

j=1

∂f
∂z̄ j dz̄ j .

RicT (X ,Y ) = Ric(X ,Y ) + 2gT (X ,Y ) .

Let ρT = RicT (Φ·, ·) and ρ = Ric(Φ·, ·).

ρT is called the transverse Ricci form.

ρT = ρ+ 2dη .



Appendix (2)

Transverse Einstein metric

RicT = cgT .

ρT is a closed basic form and its basic cohomology class
[ρT ]B = c1

B is the basic first Chern class.

c1
B is called positive (respectively, negative, null) if it contain a

positive (respectively, negative, null) representation

c1
B = k [dη]B

where k = +1,−1,0.


