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INTRODUCTION

The line of development that leads to higher gauge theories:

• Within the LQG framework, the covariant quantization program is based on a

“path integral on a lattice” idea, starting from the classical action for GR in the

form of a BF theory with a simplicity constraint, known as the Plebanski action.

The lattice quantization gives rise to spinfoam models.

• Since the Plebanski action does not contain the tetrad fields in its topological BF

sector, the spinfoam models are hard to couple to matter fields. This problem is

solved by passing to the 2BF action, which is a categorical generalization of the

BF theory. The matter fields can now be coupled, albeit in an ad hoc way (as in

the Standard Model). The 2BF action was a first physically relevant example of

a higher gauge theory, and its lattice quantization was termed “spincube model”.

• Yet another categorical generalization to the new 3BF action manages to combine

gravity, gauge fields and matter fields in a unified geometric and algebraic way,

paving the way to a “categorical unification” of all fields.



CATEGORY THEORY AND 3-GROUPS

A flash introduction to the category theory “ladder”:

• a category C = (Obj,Mor) is a structure which has objects and morphisms

between them,

X, Y, Z, · · · ∈ Obj , f, g, h, · · · ∈Mor ,

f : X → Y, g : Z → X, h : X → Y, . . .

such that certain rules are respected, like the associativity of morphism composi-

tion, etc.

• a 2-category C2 = (Obj,Mor1,Mor2) is a structure which has objects, morphisms

between them, and morphisms between morphisms, called 2-morphisms,

X, Y, Z, · · · ∈ Obj , f, g, h, · · · ∈Mor1 , α, β, · · · ∈Mor2 ,

f : X → Y, g : Z → X, h : X → Y, . . . α : f → h , . . .

such that similar rules as above are respected.



CATEGORY THEORY AND 3-GROUPS

• a 3-category C3 = (Obj,Mor1,Mor2,Mor3) additionally has morphisms between

2-morphisms, called 3-morphisms,

Θ,Φ, · · · ∈Mor3 , Θ : α→ β , . . .

again with a certain set of axioms about compositions of various n-morphisms.

• one can further generalize these structures to introduce 4-categories, n-categories,

∞-categories, etc.

The algebraic structure of a group is a special case of a category:

• a group is a category with only one object, while all morphisms are invertible;

• a 2-group is a 2-category with only one object, while all 1-morphisms and 2-

morphisms are invertible;

• a 3-group is a 3-category with only one object, while all 1-morphisms, 2-morphisms

and 3-morphisms are invertible.



LIE 3-GROUPS

A more practical way to talk about 3-group — a 2-crossed module:

L
δ→ H

∂→ G ,

• for our purposes L, H and G are ordinary Lie groups,

• there are two “boundary homomorphisms” δ and ∂,

• there is a defined action . of G onto G, H and L,

. : G×G→ G , . : G×H → H , . : G× L→ L ,

• there is a bracket operation over H to L,

{ , } : H ×H → L ,

• and certain axioms are assumed to hold true among all these maps.



LIE 3-GROUPS

The axioms of a 2-crossed module L
δ→ H

∂→ G:

g . ∂h = ∂(g . h) ,

g . δl = δ(g . l) ,

g . g0 = g g0 g
−1 ,

g . {h1, h2} = {g . h1, g . h2} ,
∂δ = 1G ,

δ {h1, h2} = h1h2h
−1
1 (∂h1) . h

−1
2 ,

{δl1, δl2} = l1l2l
−1
1 l−12 ,

{h1h2, h3} = {h1, h2h3h−12 } ∂h1 . {h2, h3} ,
{δl, h} {h, δl} = l(∂h . l−1) .

. . . for all g ∈ G, h ∈ H and l ∈ L. . . :-)



LIE 3-GROUPS

A Lie 3-group has a corresponding Lie 3-algebra, i.e. a differential

2-crossed module:

l
δ→ h

∂→ g ,

• where l, h, g are Lie algebras of L, H , G,

• the maps δ, ∂, . and { , } are inherited from the 3-group,

• “corresponding” axioms apply.

In addition to all this, Lie algebras have their own Lie structure:

• generators,

TA ∈ l , ta ∈ h , τα ∈ g

• structure constants,

[TA, TB] = fAB
CTC , [ta, tb] = fab

ctc , [τα, τβ] = fαβ
γτγ ,

• and symmetric bilinear invariant Killing forms,

〈TA, TB〉l = gAB , 〈ta, tb〉h = gab , 〈τα, τβ〉g = gαβ .



LIE 3-GROUPS

The main purpose of all this structure is to generalize the notion of

parallel transport from curves to surfaces to volumes:

• Given a 4-dimensional manifold M, define a 3-connection (α, β, γ) as a triple of

3-algebra-valued differential forms,

α = ααµ(x) τα dxµ ∈ Λ1(M, g) ,

β = 1
2β

a
µν(x) ta dxµ ∧ dxν ∈ Λ2(M, h) ,

γ = 1
3!γ

A
µνρ(x)TA dxµ ∧ dxν ∧ dxρ ∈ Λ3(M, l) .

• Then introduce the line, surface and volume holonomies,

g = P exp

∫
C1
α , h = P exp

∫
S2
β , l = P exp

∫
V3
γ ,

• and corresponding curvature forms,

F = dα + α ∧ α− ∂β ,
G = dβ + α ∧. β − δγ ,
H = dγ + α ∧. γ − {β ∧ β} .



HIGHER GAUGE THEORIES

At this point one can construct the so-called 3BF theory, with the

action:

S3BF =

∫
M
〈B ∧ F〉g + 〈C ∧ G〉h + 〈D ∧H〉l .

• 3BF theory is a topological gauge theory,

• it is based on the 3-group structure,

• it is a generalization of an ordinary BF theory for a given Lie group G,

The physical interpretation of the Lagrange multipliers C and D:

• the h-valued 1-form C can be interpreted as the tetrad field, if H = R4 is the

spacetime translation group:

C → e = eaµ(x) ta dxµ ,

• the l-valued 0-form D can be interpreted as the set of real-valued matter fields,

given some Lie group L:

D → φ = φA(x)TA .



HIGHER GAUGE THEORIES

How to choose the 3-group? The simplest example — the (trivial)

Standard Model 3-group:

G = SO(3, 1)× SU(3)× SU(2)× U(1) , H = R4 , L to be discussed.

• boundary maps are trivial — for all l ∈ L and ~v ∈ H , we define

δl = 1H = 0 , ∂~v = 1G ,

• the bracket is trivial — for all ~u,~v ∈ H , we define

{~u,~v} = 1L ,

• the action . of G on itself is via the adjoint representation, the action on H is via

vector representation for the SO(3, 1) sector and via trivial representation for the

SU(3)× SU(2)× U(1) sector.

• the action of G on L is nontrivial and depends on the choice of L (to be discussed).

One can verify that all axioms of a 3-group are satisfied.



HIGHER GAUGE THEORIES

How to choose L? Study the 3BF action:

S3BF =

∫
M
Bα ∧ Fβgαβ + ea ∧ Gbgab + φAHBgAB .

• The indices α of G split according to its structure, as α = (ab , i), giving the

connection and curvature

α = ωabJab + Aiτi , F = RabJab + F iτi .

• The vectorial action of SO(3, 1) on H = R4 implies the Minkowski signature of

the bilinear invariant on R4, so that

gab = ηab ≡ diag(−1,+1,+1,+1) .

• Given that φ = φATA, we have one real-valued field φA(x) for each generator

TA ∈ l.



THE STANDARD MODEL

How many real-valued field components do we have in the matter

sector of the Standard Model? The fermion sector gives us:( νe
e−

)
L

(
ur
dr

)
L

(
ug
dg

)
L

(
ub
db

)
L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R


= 16

spinors

family
×

×3 families × 4
real-valued fields

spinor
= 192 real-valued fields φA .

The Higgs sector gives us:(
φ+

φ0

)}
= 2 complex scalar fields = 4 real-valued fields φA .

This suggests the structure for L in the form:

L = Lfermion × LHiggs , dimLfermion = 192 , dimLHiggs = 4 .



THE STANDARD MODEL

The action . : G×L→ L specifies the transformation properties of each

real-valued field φA with respect to Lorentz and internal symmetries.

• For example, in (
ub
db

)
L

the action

g . ub , g ∈ SO(3, 1)× SU(3)× SU(2)× U(1) ,

encodes that ub consists of 4 real-valued fields which transform as:

– a left-handed spinor wrt. SO(3, 1),

– as a “blue” component of the fundamental representation of SU(3),

– and as “isospin +1
2” of the left doublet wrt. SU(2)× U(1).

• Moreover, G acts in the same way across families, suggesting the structure

Lfermion = L1st family × L2nd family × L3rd family , dimLk-th family = 64 .



THE STANDARD MODEL

A realisation that reproduces the Standard Model:

• Choice of the 3-group:

L = R4(C)× R64(G)× R64(G)× R64(G) ,

G = SO(3, 1)× SU(3)× SU(2)× U(1) , H = R4 ,

where G is the Grassmann algebra.

• The constrained 3BF action:

S =

∫
Bα̂ ∧ F α̂ + eâ ∧ G â + DÂ ∧H

Â

+
(
Bα̂ − Cα̂β̂Mcdβ̂e

c ∧ ed
)
∧ λα̂ −

(
γÂ − e

a ∧ eb ∧ ecCÂ
B̂MabcB̂

)
∧ λÂ − 4πi l2p εabcde

a ∧ eb ∧ βcDÂT
dÂ

B̂D
B̂

+ζabα̂ ∧
(
Mab

α̂εcdefec ∧ ed ∧ ee ∧ ef − F α̂ ∧ ec ∧ ed
)
+ ζabÂ ∧

(
Mabc

Âεcdefed ∧ ee ∧ ef − F Â ∧ ea ∧ eb
)

−εabcdea ∧ eb ∧ ec ∧ ed
(
MÂB̂D

ÂDB̂ + YÂB̂ĈD
ÂDB̂DĈ + LÂB̂ĈD̂D

ÂDB̂DĈDD̂
)
.



CONCLUSIONS

• Higher gauge theory represents a formalism where gravity, gauge fields, fermions

and Higgs are treated on an equal footing.

• The underlying algebraic structure of a 3-group classifies all fundamental fields by

specifying groups L,H,G and their maps δ, ∂, ., { , }.

• This structure has natural geometrical interpretation of parallel transport along a

curve, a surface, and a volume.

• The gauge group L specifies the complete matter sector of the Standard Model if

one chooses

L = R4(C)× R64(G)× R64(G)× R64(G) .

• The action . of G on L specifies the transformation properties of matter fields.

• Nontrivial choices of the 3-group structure may provide new avenues for research

on unification of all fields.
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