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Outline

I The geometric (physical) initial data is referred to as a triple
(M, g ,K ) where (M, g) is a Riemannian 3-fold and K is a
symmetric 2-tensor. They cannot be chosen freely; they must
satisfy the constraints.

I In this talk, we give a brief introduction to the standard
conformal method, initiated by Lichnerowicz, and extended by
Choquet-Bruhat and York.

I There is another way to construct vacuum initial data,
referred to as ’the conformally covariant split’ or, historically,
’Method B.’

I Joint with P. Mach and Y. Wang, we prove existence of
solutions of the conformally covariant split system giving rise
to non-constant mean curvature vacuum initial data for the
Einstein field equations.
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Spacetime and the Einstein Field Equations

I Let (N1,3, ĝ) be a Lorentz manifold satisfying the vacuum
Einstein field equations

Ric(ĝ)− R(ĝ)

2
ĝ = 0. (1)

I Let (M3, g̃ij ,Kij) be a spacelike hypersurface in (N1,3, ĝ).
Here g̃ij is the induced 3-metric of M and Kij is the second
fundamental form of M in N.
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ĝ = 0. (1)

I Let (M3, g̃ij ,Kij) be a spacelike hypersurface in (N1,3, ĝ).
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Vacuum Constraint Equations

I The triple (M, g̃ ,K ) satisfies the vacuum Einstein’s
constraints.

R̃ − |K |2g̃ + (trg̃K )2 = 0 (Hamiltonian cosntraint), (2a)

divg̃K − dtrg̃K = 0 (momentum constraint), (2b)

where R̃ is the scalar curvature of M with respect to the
metric g̃ .

I These equations are coming from (the contracted version of)
the Gauss-Codazzi-Mainardi equations in submanifold
geometry. (Necessary conditions)
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I Question: How to construct vacuum initial data satisfying the
vacuum Einstein’s constraints?

I This problem is notoriously difficult!

I There is a so-called conformal method. (Lichnerowicz,
Choquet-Bruhat, York, Isenberg, ...)
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Conformal Method - A

I Free data (M3, g , σ, τ):
g - a Riemannian metric on M; σ - a symmetric trace- and
divergence-free (TT) tensor of type (0, 2); τ a smooth
function on M.

I Consider the following system of equations for a positive
function φ and a one-form W :

−8∆φ+ Rφ = −2

3
τ2φ5 + |σ + LW |2φ−7, (3a)

∆LW =
2

3
φ6dτ. (3b)

I Here ∆ = ∇i∇i and R are the Laplacian and the scalar
curvature computed with respect to metric g , and ∆LW is
defined as ∆LW = divg (LW ), where L is the conformal
Killing operator,

(LW )ij = ∇iWj +∇jWi −
2

3
(divgW )gij . (4)
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Conformal Method - A

I Equation (3a) is called the Lichnerowicz equation, and
equation (3b) is called the vector equation.

I System (3) is referred to as the vacuum conformal constraints.

I A dual to a form W satisfying the equation LW = 0 is called
a conformal Killing vector field.

I Proposition A. Suppose that a pair (φ,W ) solves the
vacuum conformal constraints (3). Define g̃ = φ4g , and
K = τ

3φ
4g + φ−2(σ + LW ). Then the triple (M, g̃ ,K )

becomes an initial data set satisfying the vacuum Einstein’s
constraints and trg̃K = τ .
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Conformal Method - A

I Assume that M is closed and has no conformal Killing vector
fields.

I For τ being a constant, then the vector equation implies that
W ≡ 0 and one has to focus on the Lichnerowicz equation.

I The following table [Isenberg] summarizes whether or not the
Lichnerowicz equation admits a positive solution.

σ2 ≡ 0, τ = 0 σ2 ≡ 0, τ 6= 0 σ2 6≡ 0, τ = 0 σ2 6≡ 0, τ 6= 0
Y+ No No Yes Yes
Y0 Yes No No Yes
Y− No Yes No Yes

Here Y denotes the Yamabe constant. For data in the class
(Y0, σ2 ≡ 0, τ = 0), any constant is a solution. For data in all
other classes for solutions exist, the solution is unique.
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Conformal Method - A

I In general, the case of non-constant τ remains still open.

I Some results are obtained when dτ/τ or σ are small.
Isenberg, Ó Murchadha, Maxwell, ...

I Recently, Dahl, Gicquaud, and Humbert proved the following
criterion for the existence of solutions to Eqs. (3). Assume
that (M, g) has no conformal Killing vector fields and that
σ 6≡ 0, if the Yamabe constant Y (g) ≥ 0. Then, if the limit
equation

∆LW = α

√
2

3
|LW |dτ

τ
(5)

has no nonzero solutions for all α ∈ (0, 1], the vacuum
conformal constraints (3) admit a solution (φ,W ) with φ > 0.
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Conformal Method - A

I Moreover, they provided an example on the sphere S3 such
that the limit equation (5) does have a nontrivial solution for
some α0 ∈ (0, 1].

I Unfortunately, the result of Dahl, Gicquaud, and Humbert is
not an alternative criterion. In fact, Nguyen found that there
also exists an example such that both the limit equation (5)
and the vacuum conformal constraints (3) have nontrivial
solutions.
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Conformal Method - A

I Let ω := |σ + LgW |g .

I The Lichnerowicz equation (3a) is written as φ−5Pg ,ωφ = 2
3τ

2

where Pg ,ωφ := 8∆gφ− Rgφ+ ω2φ−7.

I The Lichnerowicz equation (3a) has a covariance property
under conformal changes of the metric g . Namely, if φ is a
solution of (3a) and ψ is any positive function, one may
define g̃ = ψ4g , ω̃ = ψ−6ω, φ̃ = ψ−1φ, then

φ̃−5Pg̃ ,ω̃φ̃ = φ−5Pg ,ωφ =
2

3
τ2. (6)

I But the vector equation (3b) does not possess such a property.
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Conformal Method - B

I There is another way to construct vacuum initial data. It is
sometimes referred to as ‘the conformally covariant split’ or,
historically, ‘Method B.’

I We are trying to find a positive function φ and a one-form W
satisfying the so-called ‘conformally covariant split system:’

∆φ− 1

8
Rφ+

1

8
|σ|2φ−7 +

1

4
〈σ, LW 〉φ−1 −

(
1

12
τ 2 − 1

8
|LW |2

)
φ5 = 0,

(7a)

∇i (LW )ij −
2

3
∇jτ + 6(LW )ij∇i log φ = 0.

(7b)

I Proposition B. Let g̃ = φ4g , and
K = τ

3φ
4g + φ−2σ + φ4LW . For (φ,W ) solving system (7),

the triple (M, g̃ ,K ) becomes vacuum initial data.
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Conformal Method - B

I Define ω = ω(σ, φ,W , g) = |σ + φ6LgW |g .

I Then the system (7) can be written as

φ−5Pg ,ωφ =
2

3
τ2, (8a)

∆g ,φW =
2

3
dτ, (8b)

where ∆g ,φW = φ−6divg (φ6LgW ).

Naqing Xie Belgrade, 9-14 SEP 2019



Conformal Method - B

I Define ω = ω(σ, φ,W , g) = |σ + φ6LgW |g .

I Then the system (7) can be written as

φ−5Pg ,ωφ =
2

3
τ2, (8a)

∆g ,φW =
2

3
dτ, (8b)

where ∆g ,φW = φ−6divg (φ6LgW ).

Naqing Xie Belgrade, 9-14 SEP 2019



Conformal Method - B

I We now make the following conformal change:
g̃ = ψ4g , φ̃ = ψ−1φ, σ̃ = ψ−2σ, W̃ = ψ4W .

I Further, we have σ̃ is still TT with respect to the metric g̃
and ω̃ = ω̃(σ̃, φ̃, W̃ , g̃) = ψ−6ω.

I Then for the corresponding vector equation, we now have
∆

g̃ ,φ̃
W̃ = ∆g ,φW .

I The operator given by

Pg

(
φ

W

)
:=

(
φ−5Pg ,ωφ

∆g ,φW

)
(9)

is conformally covariant, i.e.,

Pg̃

(
φ̃

W̃

)
= Pg

(
φ

W

)
=

2

3

(
τ2

dτ

)
. (10)
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Our Work

I Suppose that we already have vacuum initial data (M, g ,K )
such that τ̄ = trgK is constant.

I In this case the traceless part of K , σ̄ij = Kij − trgK
3 gij is

divergence free, and system (7) admits a particular solution
(φ̄ ≡ 1, W̄ ≡ 0) for the data (σ, τ) = (σ̄, τ̄). This obvious
solution can be understood as transforming the seed data
(M, g ,K ) into itself.

I We use the implicit function theorem to deduce existence of
other solutions of Eqs. (7) with τ 6= trgK .

I An immediate observation concerning system (7) is that it
admits the following scaling symmetry. Suppose that system

(7) has a solution (φ,W ). Set φ̂ = µ−
1
4φ, Ŵ = µ

1
2 W for

some positive number µ ∈ R+. Then (φ̂, Ŵ ) satisfy system

(7) with the data σ̂ and τ̂ given by σ̂ij = µ−1σij , τ̂ = µ
1
2 τ .
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Conformally Covariant Split System on a Closed Manifold

I Assume that (M, g) is a closed 3-dimensional Riemannian
manifold. Making use of the implicit function theorem, we
construct a family of solutions of the conformally covariant
split system (7) on M. These solutions give rise to vacuum
initial data.

I Theorem 1. Suppose that we already have vacuum initial
data (M, g ,K ). Assume that τ̄ = trgK = const, and that
K 6= 0 in some region of M. Assume further that (M, g) has
no conformal Killing vector fields. Then there is a small
neighborhood of τ̄ in W 1,p such that for any τ in this
neighborhood, there exists (φτ ,Wτ ) ∈W 2,p

+ ×W 2,p solving
the system (7) for the data σ̄ij = Kij − τ̄

3 gij and τ .

I Remark: For K ≡ 0, one can set W ≡ 0, and the system (7)
reduces the Yamabe problem.
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Conformally Covariant Split System on a Closed Manifold

I Note that the scaling symmetry discussed before can be used
to produce new solutions from the already obtained ones. In
particular, one can obtain solutions with τ deviating from the
vicinity of τ̄ , at a cost of rescaling σ̄. When the seed solution
(M, g ,K ) is a maximal slice, one can also produce new
non-CMC initial data with the following scaling argument.

I Theorem 2. Suppose that we already have vacuum initial
data (M, g ,K ) with trgK = 0. Suppose K 6= 0 for some
region. Assume further that (M, g) has no conformal Killing
vector fields. Given any τ ∈W 1,p, there is a positive constant
η > 0 such that for any µ ∈ (0, η), there exists at least one
solution (φ,W ) ∈W 2,p

+ ×W 2,p of system (7) for the data
(σ̂ = µ12K , τ̂ = µ−1τ).
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Conformally Covariant Split System on a Compact
Manifold with Boundary

I Let (M, g̃) be a compact 3-dimensional manifold with the
boundary ∂M, and let ν̃ be the unit vector normal to ∂M. We
assume that ν̃ is pointing ‘outwards’ of M, and therefore to
the ‘inside’ of the black hole. The two null expansions of ∂M
are given by

Θ± = ∓Hg̃ − K (ν̃, ν̃) + trg̃K , Hg̃ = ∇̃i ν̃
i .

I The condition that ∂M is a marginally trapped surface can be
stated as Θ+ = 0, Θ− ≤ 0. Let us further observe that
1
2 (Θ− + Θ+) = −K (ν̃, ν̃) + trg̃K , and 1

2 (Θ− −Θ+) = Hg̃ .
Consequently, the condition Θ+ = 0 yields

1

2
Θ− = −K (ν̃, ν̃) + trg̃K , (11)

1

2
Θ− = Hg̃ . (12)
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Conformally Covariant Split System on a Compact
Manifold with Boundary

I The above conditions can be also expressed in terms of
quantities related directly to (M, g).

I Conditions (11) and (12) can be now rewritten as

φ−6σ(ν, ν) + LW (ν, ν)− 2

3
τ +

1

2
Θ− = 0 (13)

and

∂νφ+
1

4
Hgφ−

Θ−
8
φ3 = 0.
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Conformally Covariant Split System on a Compact
Manifold with Boundary

I Since Eq. (13) is not sufficient as a boundary condition for
W , we will actually replace it with a stronger requirement.
Let ξ denote a 1-form tangent to the boundary ∂M. We will
require, as a boundary condition, that

φ−6σ(ν, ·) + LW (ν, ·)− 2

3
τν[ +

1

2
Θ−ν

[ − ξ = 0, (14)

where ν[ is the 1-form dual to the normal vector field ν.
Clearly, Eq. (13) follows from Eq. (14), as ξ(ν) = 0.

I In the remaining part of this section, we always assume that

σ(ν, ·) = 0 (15)

on ∂M.
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Conformally Covariant Split System on a Compact
Manifold with Boundary

In summary, we are now dealing with the following set of equations

∆φ− 1

8
Rφ+

1

8
|σ|2φ−7 +

1

4
〈σ, LW 〉φ−1 −

(
1

12
τ 2 − 1

8
|LW |2

)
φ5 = 0,

(16a)

∇i (LW )ij −
2

3
∇jτ + 6(LW )ij∇i log φ = 0,

(16b)

∂νφ+
1

4
Hφ− Θ−

8
φ3 = 0,

(16c)

LW (ν, .)− 2

3
τν[ +

Θ−

2
ν[ − ξ = 0,

(16d)

where (16c) and (16d) are the boundary conditions on ∂M. Here

g ∈W 2,p(M), σ ∈W 1,p(M), τ ∈W 1,p(M), Θ− ∈W 1− 1
p ,p(∂M),

Θ− ≤ 0, and ξ ∈W 1− 1
p ,p(∂M) are the assumed data.
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Conformally Covariant Split System on a Compact
Manifold with Boundary

Theorem 3. Let (M, g ,K ) be vacuum initial data with boundary
∂M such that τ̄ = trgK = 3

2 H = const ≤ 0, where H denotes the
mean curvature of ∂M. Let Θ− = 4

3 τ̄ and ξ ≡ 0 so that Eqs. (16)
admit a solution (φ̄ ≡ 1, W̄ ≡ 0). Assume further that (M, g) has
no conformal Killing vector fields, and K 6= 0 in some region of M.
There is a small neighborhood of τ̄ in W 1,p(M) such that for any
τ in this neighborhood there exists a solution
(φτ ,Wτ ) ∈W 2,p

+ (M)×W 2,p(M) of system (16).
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Conformally Covariant Split System on a Compact
Manifold with Boundary

Theorem 4. Suppose that (M, g ,K ) satisfy the vacuum Einstein’s
constraint equations, and M has a boundary ∂M such that H ≡ 0
on ∂M. Assume that trgK = 0 and K 6= 0 in some region of M.
Assume further that (M, g) has no conformal Killing vector fields.

Given any data τ ∈W 1,p(M), Θ− ∈W 1− 1
p
,p(∂M), Θ− ≤ 0, and

ξ ∈W 1− 1
p
,p(∂M), there is a positive constant η > 0 such that for

any µ ∈ (0, η), there exists at least one solution
(φ,W ) ∈W 2,p

+ (M)×W 2,p(M) of the system (16) for the data
(σ̂ = µ12K , τ̂ = µ−1τ,Θ−, ξ).
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Conformally Covariant Split System with the Cosmological
Constant

I The Einstein vacuum constraint equations with a cosmological
constant Λ read

R̃ − |K |2g̃ + (trg̃K )2 − 2Λ = 0, (17a)

divg̃K − dtrg̃K = 0. (17b)

I Keeping standard definitions, i.e., LW defined by Eq. (4) and
K = τ

3φ
4g + φ−2σ + φ4LW , we get the system

∆φ− 1

8
Rφ+

1

8
|σ|2φ−7 +

1

4
〈σ, LW 〉φ−1

−
(

1

12
τ2 − 1

8
|LW |2 − 1

4
Λ

)
φ5 = 0, (18a)

∇i (LW )ij −
2

3
∇jτ + 6(LW )ij∇i log φ = 0. (18b)
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Conformally Covariant Split System with the Cosmological
Constant

I Similarly to the scaling symmetry described before, system
(18) admits the following scaling. Suppose that system (18)

has a solution (φ,W ). Set φ̂ = µ−
1
4φ, Ŵ = µ

1
2 W for some

positive number µ ∈ R+. Then (φ̂, Ŵ ) satisfy system (18)
with the data σ̂, τ̂ , and the cosmological constant Λ̂ given by

σ̂ = µ−1σ, τ̂ = µ
1
2 τ , Λ̂ = µΛ.

I Theorem 5. Suppose that we already have vacuum initial
data (M, g ,K ) satisfying Eqs. (17) with τ̄ = trgK = const.
Assume that (M, g) has no conformal Killing vector fields.
Assume further that −|K |2 + Λ ≤ 0 on M, and −|K |2 + Λ < 0
in some region of M. There is a small neighborhood of τ̄ in
W 1,p such that for any τ in this neighborhood, there exists
(φτ ,Wτ ) ∈W 2,p

+ ×W 2,p solving system (18) for the data
σ̄ij = Kij − τ̄

3 gij and τ .
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Conformally Covariant Split System with the Cosmological
Constant

I Theorem 5 can be generalized in two ways.

I One can generate data corresponding to Λ 6= 0 from a
seed-initial data with trgK = 0 and Λ = 0, i.e., initial data
satisfying Eqs. (2).

I The other possibility is to start with seed-initial data that
already satisfy constraints (17) with trgK = 0 and some
nonzero value of Λ. These data can be then used to generate
another set of initial data corresponding to some mean
curvature τ̂ 6= 0 and a different value of the cosmological
constant Λ̂.
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Conformally Covariant Split System with the Cosmological
Constant

I Theorem 6. Suppose that (M, g ,K ) satisfy the constraint
equations (2), and trgK = 0. Let K 6= 0 in some region, and
let (M, g) admit no conformal Killing vector fields. Given any
τ ∈W 1,p and Λ, there is a positive constant η > 0 such that
for any µ ∈ (0, η) there exists a solution
(φ,W ) ∈W 2,p

+ ×W 2,p of system (18) for the data σ̂ = µ12K ,

τ̂ = µ−1τ , and the cosmological constant Λ̂ = µ−2Λ.
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Conformally Covariant Split System with the Cosmological
Constant

I Theorem 7. Suppose that (M, g ,K ) satisfy the constraint
equations (17) with a non-zero cosmological constant Λ, and
trgK = 0. Assume that (M, g) admit no conformal Killing
vector fields. Assume further that −|K |2 + Λ ≤ 0 on M and
−|K |2 + Λ < 0 in some region of M. Given any τ ∈W 1,p,
there is a positive constant η > 0 such that for any µ ∈ (0, η)
there exists a solution (φ,W ) ∈W 2,p

+ ×W 2,p of system (18)
for the data σ̂ = µ12K , τ̂ = µ−1τ , and the cosmological
constant Λ̂ = µ−12Λ.
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Ideas of Proof of Theorem 1

I First, let us define the operator

F : W 1,p ×W
2,p
+ ×W 2,p → Lp × Lp , τφ

W

 7→ (
∆φ− 1

8
Rφ + 1

8
|σ̄|2φ−7 + 1

4
〈σ̄, LW 〉φ−1 −

(
1

12
τ2 − 1

8
|LW |2

)
φ5

∇i (LW )ij −
2
3
∇jτ + 6(LW )ij∇i log φ

)
.

I It is easy to see that F is a C 1-mapping and
F(τ̄, φ̄ ≡ 1, W̄ ≡ 0) = (0, 0). We prove that the partial
derivative of F with respect to the variables (φ,W ) is an
isomorphism at (τ̄, φ̄ ≡ 1, W̄ ≡ 0). The differential at the
point (τ̄, φ̄ ≡ 1, W̄ ≡ 0) is given by

DF|(τ̄,1,0)

(
δφ
δW

)
=

(
∆− 1

8 R − 7
8 |σ̄|

2 − 5
12 τ̄

2 , 1
4〈σ̄, L(·)〉

0 , ∆L

)(
δφ
δW

)
.
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Ideas of Proof of Theorem 1

I The invertibility of DF|(τ̄,1,0) follows from the fact that the
diagonal terms are invertible. More specifically:
Claim 1.

H : W 2,p → Lp,

δφ 7→ (∆− 1

8
R − 7

8
|σ̄|2 − 5

12
τ̄2)δφ

is invertible and
Claim 2.

∆L : W 2,p → Lp,

δW 7→ ∆LδW

is also invertible.

I The proof of Claim 2 is a consequence of the assumption that
(M, g) is closed and has no conformal Killing vector fields.
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(M, g) is closed and has no conformal Killing vector fields.
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Ideas of Proof of Theorem 1

I The proof of Claim 1 is as follows. Note that H is a Fredholm
operator of index 0. It suffices to show that H is injective.
Since (φ̄ ≡ 1, W̄ ≡ 0) solves the system (7) with the data τ̄
and σ̄, one has

−1

8
R +

1

8
|σ̄|2 − 1

12
τ̄2 = 0.

Hence,

∆− 1

8
R − 7

8
|σ̄|2 − 5

12
τ̄2 = ∆− |σ̄|2 − 1

3
τ̄2 = ∆− |K |2.

Clearly, it is a negatively definite operator.

I Finally, the theorem follows from the implicit function
theorem.
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Thanks!
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